Pharmacogenomic modeling of circulating tumor and invasive cells for prediction of chemotherapy response and resistance in pancreatic cancer.

Clin Cancer Res 2014 Oct 8;20(20):5281-9. Epub 2014 Aug 8.

Memorial Sloan Kettering, Cancer Center, New York, New York. Weill Cornell Medical College, New York, New York.

Purpose: Despite a challenging prognosis, modern cytotoxic therapy can induce tumor responses and extend life in pancreatic adenocarcinoma (PDAC). Pharmacogenomic (PGx) modeling of tumor tissue can predict the efficacy of chemotherapeutic agents in preclinical cancer models. We hypothesized that PGx profiling of circulating tumor and invasive cells (CTIC) isolated from peripheral blood could predict tumor response, progression, and resistance.

Experimental Design: A PGx model was created and validated in preclinical models. A prospective clinical trial was conducted. Fifty patients with advanced PDAC were enrolled. Before treatment, 10 mL of peripherally drawn blood was collected. CTICs isolated from this blood sample were expression profiled and the PGx model was used to predict effective and ineffective chemotherapeutic agents. The treating physicians were blinded to PGx prediction.

Results: We found that CTICs could be reliably isolated, total RNA extracted and profiled from 10 mL of peripheral blood from patients with unresectable PDAC before chemotherapy treatment and at disease progression. Using previously created PGx models to predict chemotherapy sensitivity, we found that clinical benefit was seen for study participants treated with chemotherapy regimens predicted to be effective versus chemotherapy regimens predicted to be ineffective with regard to progression-free (10.4 mo vs. 3.6 mo; P < 0.0001; HR, 0.14) and overall survival (17.2 mo vs. 8.3 mo; P < 0.0249; HR, 0.29).

Conclusions: These findings suggest that PGx profiling of CTICs can predict treatment response.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-14-0531DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346320PMC
October 2014
41 Reads

Publication Analysis

Top Keywords

tumor invasive
8
peripheral blood
8
invasive cells
8
chemotherapeutic agents
8
regimens predicted
8
circulating tumor
8
pgx model
8
pgx profiling
8
chemotherapy regimens
8
pgx
7
predict
5
chemotherapy
5
tumor
5
progression created
4
created validated
4
model created
4
chemotherapy treatment
4
clinical trial
4
pdac chemotherapy
4
prospective clinical
4

Similar Publications