DNA Binding Polyamides and the Importance of DNA Recognition in their use as Gene-Specific and Antiviral Agents.

Authors:
Dr. James Bashkin, D. Phil.
Dr. James Bashkin, D. Phil.
University of Missouri-St. Louis
Professor
Bioorganic chemistry, nucleic acids, HPV, antivirals
St. Louis, MO | United States

Med Chem (Los Angeles) 2014 Feb;4:338-344

Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA ; NanoVir, LLC, Kalamazoo, MI 49008, USA.

There is a long history for the bioorganic and biomedical use of N-methyl-pyrrole-derived polyamides (PAs) that are higher homologs of natural products such as distamycin A and netropsin. This work has been pursued by many groups, with the Dervan and Sugiyama groups responsible for many breakthroughs. We have studied PAs since about 1999, partly in industry and partly in academia. Early in this program, we reported methods to control cellular uptake of polyamides in cancer cell lines and other cells likely to have multidrug resistance efflux pumps induced. We went on to discover antiviral polyamides active against HPV31, where SAR showed that a minimum binding size of about 10 bp of DNA was necessary for activity. Subsequently we discovered polyamides active against two additional high-risk HPVs, HPV16 and 18, a subset of which showed broad spectrum activity against HPV16, 18 and 31. Aspects of our results presented here are incompatible with reported DNA recognition rules. For example, molecules with the same cognate DNA recognition properties varied from active to inactive against HPVs. We have since pursued the mechanism of action of antiviral polyamides, and polyamides in general, with collaborators at NanoVir, the University of Missouri-St. Louis, and Georgia State University. We describe dramatic consequences of ?-alanine positioning even in relatively small, 8-ring polyamides; these results contrast sharply with prior reports. This paper was originally presented by JKB as a Keynote Lecture in the 2 International Conference on Medicinal Chemistry and Computer Aided Drug Design Conference in Las Vegas, NV, October 2013.

Download full-text PDF

Source
http://dx.doi.org/10.4172/2161-0444.1000162DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022477PMC
February 2014
69 Reads
18 Citations
1.910 Impact Factor

Article Mentions


Provided by Crossref Event Data

Publication Analysis

Top Keywords

dna recognition
12
antiviral polyamides
8
polyamides active
8
polyamides
8
dna
5
size dna
4
dna activity
4
binding size
4
minimum binding
4
contrast sharply
4
sar minimum
4
activity subsequently
4
polyamides contrast
4
subsequently discovered
4
additional high-risk
4
high-risk hpvs
4
hpvs hpv16
4
small 8-ring
4
active additional
4
hpv31 sar
4

Similar Publications