Genetic, transcriptomic, and epigenetic studies of HIV-associated neurocognitive disorder.

J Acquir Immune Defic Syndr 2014 Apr;65(4):481-503

*Department of Neurology, National Neurological AIDS Bank, David Geffen School of Medicine, University of California, Los Angeles, CA; †Department of Psychiatry and Biobehavioral Science, David Geffen School of Medicine, University of California, Los Angeles, CA; ‡Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA; and §Department of Biostatistics, University of California, Los Angeles, CA.

The Human Genome Project, coupled with rapidly evolving high-throughput technologies, has opened the possibility of identifying heretofore unknown biological processes underlying human disease. Because of the opaque nature of HIV-associated neurocognitive disorder (HAND) neuropathogenesis, the utility of such methods has gained notice among NeuroAIDS researchers. Furthermore, the merging of genetics with other research areas has also allowed for application of relatively nascent fields, such as neuroimaging genomics, and pharmacogenetics, to the context of HAND. In this review, we detail the development of genetic, transcriptomic, and epigenetic studies of HAND, beginning with early candidate gene association studies and culminating in current "omics" approaches that incorporate methods from systems biology to interpret data from multiple levels of biological functioning. Challenges with this line of investigation are discussed, including the difficulty of defining a valid phenotype for HAND. We propose that leveraging known associations between biology and pathology across multiple levels will lead to a more reliable and valid phenotype. We also discuss the difficulties of interpreting the massive and multitiered mountains of data produced by current high-throughput omics assays and explore the utility of systems biology approaches in this regard.

Download full-text PDF

Source
http://dx.doi.org/10.1097/QAI.0000000000000069DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947559PMC
April 2014

Publication Analysis

Top Keywords

hiv-associated neurocognitive
8
neurocognitive disorder
8
multiple levels
8
systems biology
8
epigenetic studies
8
valid phenotype
8
transcriptomic epigenetic
8
genetic transcriptomic
8
reliable valid
4
fields neuroimaging
4
application nascent
4
nascent fields
4
lead reliable
4
functioning challenges
4
genomics pharmacogenetics
4
context hand
4
biological functioning
4
pharmacogenetics context
4
will lead
4
phenotype discuss
4

Similar Publications