The SseC translocon component in Salmonella enterica serovar Typhimurium is chaperoned by SscA.

BMC Microbiol 2013 Oct 4;13:221. Epub 2013 Oct 4.

Michael G, DeGroote Institute for Infectious Disease Research, Hamilton, Ontario L8N 3Z5, Canada.

Background: Salmonella enterica is a causative agent of foodborne gastroenteritis and the systemic disease known as typhoid fever. This bacterium uses two type three secretion systems (T3SSs) to translocate protein effectors into host cells to manipulate cellular function. Salmonella pathogenicity island (SPI)-2 encodes a T3SS required for intracellular survival of the pathogen. Genes in SPI-2 include apparatus components, secreted effectors and chaperones that bind to secreted cargo to coordinate their release from the bacterial cell. Although the effector repertoire secreted by the SPI-2 T3SS is large, only three virulence-associated chaperones have been characterized.

Results: Here we report that SscA is the chaperone for the SseC translocon component. We show that SscA and SseC interact in bacterial cells and that deletion of sscA results in a loss of SseC secretion, which compromises intracellular replication and leads to a loss of competitive fitness in mice.

Conclusions: This work completes the characterization of the chaperone complement within SPI-2 and identifies SscA as the chaperone for the SseC translocon.

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2180-13-221DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3854505PMC
October 2013

Publication Analysis

Top Keywords

ssec translocon
12
salmonella enterica
8
ssca chaperone
8
chaperone ssec
8
translocon component
8
ssca
5
ssec
5
genes spi-2
4
pathogen genes
4
ssec secretion
4
survival pathogen
4
loss ssec
4
include apparatus
4
components secreted
4
secreted effectors
4
apparatus components
4
intracellular survival
4
ssca loss
4
spi-2 include
4
encodes t3ss
4

References

(Supplied by CrossRef)

Similar Publications