Imputation-based meta-analysis of severe malaria in three African populations.

PLoS Genet 2013 May 23;9(5):e1003509. Epub 2013 May 23.

Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom.

Combining data from genome-wide association studies (GWAS) conducted at different locations, using genotype imputation and fixed-effects meta-analysis, has been a powerful approach for dissecting complex disease genetics in populations of European ancestry. Here we investigate the feasibility of applying the same approach in Africa, where genetic diversity, both within and between populations, is far more extensive. We analyse genome-wide data from approximately 5,000 individuals with severe malaria and 7,000 population controls from three different locations in Africa. Our results show that the standard approach is well powered to detect known malaria susceptibility loci when sample sizes are large, and that modern methods for association analysis can control the potential confounding effects of population structure. We show that pattern of association around the haemoglobin S allele differs substantially across populations due to differences in haplotype structure. Motivated by these observations we consider new approaches to association analysis that might prove valuable for multicentre GWAS in Africa: we relax the assumptions of SNP-based fixed effect analysis; we apply Bayesian approaches to allow for heterogeneity in the effect of an allele on risk across studies; and we introduce a region-based test to allow for heterogeneity in the location of causal alleles.

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1003509DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662650PMC
May 2013
102 Reads

Publication Analysis

Top Keywords

severe malaria
8
allow heterogeneity
8
association analysis
8
modern methods
4
methods association
4
large modern
4
loci sample
4
sample sizes
4
sizes large
4
analysis control
4
control potential
4
structure pattern
4
pattern association
4
association haemoglobin
4
population structure
4
effects population
4
potential confounding
4
confounding effects
4
susceptibility loci
4
detect malaria
4

Similar Publications