GRL-0519, a novel oxatricyclic ligand-containing nonpeptidic HIV-1 protease inhibitor (PI), potently suppresses replication of a wide spectrum of multi-PI-resistant HIV-1 variants in vitro.

Antimicrob Agents Chemother 2013 May 12;57(5):2036-46. Epub 2013 Feb 12.

Departments of Infectious Diseases and Hematology, Kumamoto University School of Medicine, Kumamoto, Japan.

We report that GRL-0519, a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) containing tris-tetrahydrofuranylurethane (tris-THF) and a sulfonamide isostere, is highly potent against laboratory HIV-1 strains and primary clinical isolates (50% effective concentration [EC50], 0.0005 to 0.0007 μM) with minimal cytotoxicity (50% cytotoxic concentration [CC50], 44.6 μM). GRL-0519 blocked the infectivity and replication of HIV-1NL4-3 variants selected by up to a 5 μM concentration of ritonavir, lopinavir, or atazanavir (EC50, 0.0028 to 0.0033 μM). GRL-0519 was also potent against multi-PI-resistant clinical HIV-1 variants isolated from patients who no longer responded to existing antiviral regimens after long-term antiretroviral therapy, highly darunavir (DRV)-resistant variants, and HIV-2ROD. The development of resistance against GRL-0519 was substantially delayed compared to other PIs, including amprenavir (APV) and DRV. The effects of nonspecific binding of human serum proteins on GRL-0519's antiviral activity were insignificant. Our analysis of the crystal structures of GRL-0519 (3OK9) and DRV (2IEN) with protease suggested that the tris-THF moiety, compared to the bis-THF moiety present in DRV, has greater water-mediated polar interactions with key active-site residues of protease and that the tris-THF moiety and paramethoxy group effectively fill the S2 and S2' binding pockets, respectively, of the protease. The present data demonstrate that GRL-0519 has highly favorable features as a potential therapeutic agent for treating patients infected with wild-type and/or multi-PI-resistant variants and that the tris-THF moiety is critical for strong binding of GRL-0519 to the HIV protease substrate binding site and appears to be responsible for its favorable antiretroviral characteristics.

Download full-text PDF

Source
http://aac.asm.org/content/57/5/2036.full.pdf
Web Search
http://aac.asm.org/cgi/doi/10.1128/AAC.02189-12
Publisher Site
http://dx.doi.org/10.1128/AAC.02189-12DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3632947PMC
May 2013
23 Reads
4.476 Impact Factor

Publication Analysis

Top Keywords

tris-thf moiety
12
protease inhibitor
8
hiv-1 protease
8
μm grl-0519
8
hiv-1 variants
8
grl-0519 novel
8
grl-0519
8
protease
6
variants
5
hiv-1
5
grl-0519 highly
4
antiretroviral therapy
4
treating patients
4
long-term antiretroviral
4
therapy highly
4
antiviral regimens
4
responded existing
4
existing antiviral
4
highly favorable
4
highly darunavir
4

Similar Publications