A computational tool for the design of live attenuated virus vaccine based on microRNA-mediated gene silencing.

BMC Genomics 2012 13;13 Suppl 7:S15. Epub 2012 Dec 13.

Information Systems Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC),113 Thailand Science Park, Phaholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand.

Background: The microRNA-based gene-silencing machinery has been recognized as a promising approach to control viral replication and used for improving safety for the live attenuated virus vaccines. The effective host microRNA response elements (MREs) have been incorporated into a virus sequence mainly based on the experimental trials for identifying both microRNA binding sites and effective mutations. The design of MREs for viral genomes or with multiple host microRNAs of interest, then, will be time and cost consuming.

Results: In this paper, we introduced a computational flow that could be used to design MREs of human microRNAs within Influenza A H1N1 virus gene segments. The main steps of the flow includes locating possible binding sites; MREs, of human microRNAs within the viral sequences using a miRNA target prediction tool (miranda), performing various mutations among mismatched binding positions, calculating the binding energy, score, identity, and the effects of changed physical properties of amino acids according to the changed bases in RNA level, and prioritizing the mutated binding sites. The top ranked MREs of human microRNA hsa-miR-93 is consistent with previous literature while other results waited to be experimentally verified. To make the computational flow easily accessible by virologists, we also developed MicroLive, a web server version of the MRE design flow together with the database of miranda-predicted MREs within gene sequences of seven RNA viruses including Influenza A, dengue, hepatitis C, measles, mumps, poliovirus, and rabies. Users may design MREs of specific human microRNAs for their input viral sequences using MRE design tool or optimize the miranda-predicted MREs of seven viruses available on the system. Also, users could design varied number of MREs for multiple human microRNAs to modulate the degree of live vaccine attenuation and reduce the likelihood of escape mutants.

Conclusions: The computational design of MREs helps reduce time and cost for experimental trials. While the flow was demonstrated using human microRNAs and Influenza A H1N1 virus, it could be flexibly applied to other hosts (e.g., animals) and viruses of interest for constructing host-specific live attenuated vaccines. Also, it could be deployed for engineering tissue-specific oncolytic viruses in cancer virotherapeutics. The MicroLive web server is freely accessible at http://www.biotec.or.th/isl/microlive.

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2164-13-S7-S15DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521223PMC
June 2013
3 Reads

Publication Analysis

Top Keywords

human micrornas
20
design mres
16
live attenuated
12
binding sites
12
mres human
12
mres
10
time cost
8
experimental trials
8
computational flow
8
influenza h1n1
8
miranda-predicted mres
8
users design
8
mre design
8
web server
8
h1n1 virus
8
microlive web
8
micrornas influenza
8
viral sequences
8
design
8
attenuated virus
8

Altmetric Statistics

Similar Publications