Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana L.

J Exp Bot 2012 Sep;63(15):5677-87

Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.

Selenium excess can cause toxicity symptoms, e.g. root growth inhibition in non-hyperaccumulator plants such as Arabidopsis. Selenite-induced hormonal and signalling mechanisms in the course of development are poorly understood; therefore this study set out to investigate the possible hormonal and signalling processes using transgenic and mutant Arabidopsis plants. Significant alterations were observed in the root architecture of the selenite-treated plants, due to the loss of cell viability in the root apex. During mild selenite excess, the plants showed symptoms of the morphogenic response: primary root (PR) shortening and increased initiation of laterals, ensuring better nutrient and water uptake and stress acclimation. As well as lower meristem cell activity, the second reason for the Se-induced growth hindrance is the hormonal imbalance, since the in situ expression of the auxin-responsive DR5::GUS, and consequently the auxin levels, significantly decreased, while that of the cytokinin-inducible ARR5::GUS and the ethylene biosynthetic ACS8::GUS increased. It is assumed that auxin and ethylene might positively regulate selenium tolerance, since reduced levels of them resulted in sensitivity. Moreover, high cytokinin levels caused notable selenite tolerance. During early seedling development, nitric oxide (NO) contents decreased but hydrogen peroxide levels increased reflecting the antagonism between the two signal molecules during Se excess. High levels of NO in gsnor1-3, lead to selenite tolerance, while low NO production in nia1nia2 resulted in selenite sensitivity. Consequently, NO derived from the root nitrate reductase activity is responsible for the large-scale selenite tolerance in Arabidopsis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/ers222DOI Listing
September 2012
27 Reads

Publication Analysis

Top Keywords

hormonal signalling
12
selenite tolerance
12
root growth
8
signalling mechanisms
8
selenite-induced hormonal
8
root
6
selenite
5
levels
5
activity second
4
meristem cell
4
cell activity
4
well lower
4
antagonism signal
4
acclimation well
4
second reason
4
reflecting antagonism
4
lower meristem
4
se-induced growth
4
levels increased
4
hormonal imbalance
4

References

(Supplied by CrossRef)

2001

2009

Plant Physiology 2011

Chang et al.
Science 1993

2000

Journal of Experimental Botany 2006

D'Agostino et al.
Plant Physiology 2000

Desikan et al.
Plant Physiology 2001

PNAS 2005

PNAS 2011

PLANT GROWTH REGULATION 2010

Similar Publications