Endothelial cells are able to synthesize and release catecholamines both in vitro and in vivo.

Authors:
Daniela Sorriento
Daniela Sorriento
Department of Clinical Medicine
Italy
Gaetano Santulli
Gaetano Santulli
Federico II University of Naples
Italy
Antonio Anastasio
Antonio Anastasio
Department of Clinical Medicine
Italy
Bruno Trimarco
Bruno Trimarco
Federico II University
Napoli | Italy
Prof. Guido Iaccarino, MD, PhD
Prof. Guido Iaccarino, MD, PhD
Federico II University of Naples
Full Professor of Applied Medical Science and Technology
Cardiology
Napoli, Campania | Italy

Hypertension 2012 Jul 4;60(1):129-36. Epub 2012 Jun 4.

Department of Medicine and Surgery, Università di Salerno, Via Salvador Allende, 84081 Baronissi, Italy.

Recently it has been demonstrated that catecholamines are produced and used by macrophages and mediate immune response. The aim of this study is to verify whether endothelial cells (ECs), which are of myeloid origin, can produce catecholamines. We demonstrated that genes coding for tyrosine hydroxylase, Dopa decarboxylase, dopamine β hydroxylase (DβH), and phenylethanolamine-N-methyl transferase, enzymes involved in the synthesis of catecholamines, are all expressed in basal conditions in bovine aorta ECs, and their expression is enhanced in response to hypoxia. Moreover, hypoxia enhances catecholamine release. To evaluate the signal transduction pathway that regulates catecholamine synthesis in ECs, we overexpressed in bovine aorta ECs either protein kinase A (PKA) or the transcription factor cAMP response element binding, because PKA/cAMP response element binding activation induces tyrosine hydroxylase transcription and activity in response to stress. Both cAMP response element binding and PKA overexpression enhance DβH and phenylethanolamine-N-methyl transferase gene expression and catecholamine release, whereas H89, inhibitor of PKA, exerts the opposite effect, evidencing the role of PKA/cAMP response element binding transduction pathway in the regulation of catecholamine release in bovine aorta ECs. We then evaluated by immunohistochemistry the expression of tyrosine hydroxylase, Dopa decarboxylase, DβH, and phenylethanolamine-N-methyl transferase in femoral arteries from hindlimbs of C57Bl/6 mice 3 days after removal of the common femoral artery to induce chronic ischemia. Ischemia evokes tyrosine hydroxylase, Dopa decarboxylase, DβH, and phenylethanolamine-N-methyl transferase expression in the endothelium. Finally, the pharmacological inhibition of catecholamine release by fusaric acid, an inhibitor of DβH, reduces the ability of ECs to form network-like structures on Matrigel matrix. In conclusion, our study demonstrates for the first time that ECs are able to synthesize and release catecholamines in response to ischemia.

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.189605DOI Listing
July 2012
32 Reads
23 Citations
6.480 Impact Factor

Publication Analysis

Top Keywords

catecholamine release
16
phenylethanolamine-n-methyl transferase
16
dβh phenylethanolamine-n-methyl
16
element binding
16
response element
16
tyrosine hydroxylase
16
bovine aorta
12
dopa decarboxylase
12
hydroxylase dopa
12
aorta ecs
12
pka/camp response
8
transduction pathway
8
camp response
8
response
8
decarboxylase dβh
8
synthesize release
8
endothelial cells
8
release catecholamines
8
ecs
7
release
6

References

(Supplied by CrossRef)
Sera and conditioned media contain different isoforms of platelet-derived growth factor (PDGF) which bind to different classes of PDGF receptor
Bowen-Pope DF et al.
J Biol Chem 1989

Similar Publications