Search our Database of Scientific Publications and Authors

I’m looking for a

    Details and Download Full Text PDF:
    Intermittent hypoxia-induced sensitization of central chemoreceptors contributes to sympathetic nerve activity during late expiration in rats.

    J Neurophysiol 2011 Jun 6;105(6):3080-91. Epub 2011 Apr 6.
    Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
    Hypertension elicited by chronic intermittent hypoxia (CIH) is associated with elevated activity of the thoracic sympathetic nerve (tSN) that exhibits an enhanced respiratory modulation reflecting a strengthened interaction between respiratory and sympathetic networks within the brain stem. Expiration is a passive process except for special metabolic conditions such as hypercapnia, when it becomes active through phasic excitation of abdominal motor nerves (AbN) in late expiration. An increase in CO(2) evokes late-expiratory (late-E) discharges phase-locked to phrenic bursts with the frequency increasing quantally as hypercapnia increases. In rats exposed to CIH, the late-E discharges synchronized in AbN and tSN emerge in normocapnia. To elucidate the possible neural mechanisms underlying these phenomena, we extended our computational model of the brain stem respiratory network by incorporating a population of presympathetic neurons in the rostral ventrolateral medulla that received inputs from the pons, medullary respiratory compartments, and retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG). Our simulations proposed that CIH conditioning increases the CO(2) sensitivity of RTN/pFRG neurons, causing a reduction in both the CO(2) threshold for emerging the late-E activity in AbN and tSN and the hypocapnic threshold for apnea. Using the in situ rat preparation, we have confirmed that CIH-conditioned rats under normal conditions exhibit synchronized late-E discharges in AbN and tSN similar to those observed in control rats during hypercapnia. Moreover, the hypocapnic threshold for apnea was significantly lowered in CIH-conditioned rats relative to that in control rats. We conclude that CIH may sensitize central chemoreception and that this significantly contributes to the neural impetus for generation of sympathetic activity and hypertension.
    PDF Download - Full Text Link
    ( Please be advised that this article is hosted on an external website not affiliated with PubFacts.com)
    Source Status
    http://dx.doi.org/10.1152/jn.00070.2011DOI ListingPossible
    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118734PMCFound

    Similar Publications

    Non-chemosensitive parafacial neurons simultaneously regulate active expiration and airway patency under hypercapnia in rats.
    J Physiol 2017 Mar 1;595(6):2043-2064. Epub 2017 Feb 1.
    Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
    Key Points: Hypercapnia or parafacial respiratory group (pFRG) disinhibition at normocapnia evokes active expiration in rats by recruitment of pFRG late-expiratory (late-E) neurons. We show that hypercapnia simultaneously evoked active expiration and exaggerated glottal dilatation by late-E synaptic excitation of abdominal, hypoglossal and laryngeal motoneurons. Simultaneous rhythmic expiratory activity in previously silent pFRG late-E neurons, which did not express the marker of ventral medullary CO-sensitive neurons (transcription factor Phox2b), was also evoked by hypercapnia. Read More
    Respiratory Network Enhances the Sympathoinhibitory Component of Baroreflex of Rats Submitted to Chronic Intermittent Hypoxia.
    Hypertension 2016 10 1;68(4):1021-30. Epub 2016 Aug 1.
    From the Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil.
    Chronic intermittent hypoxia (CIH) produces respiratory-related sympathetic overactivity and hypertension in rats. In this study, we tested the hypothesis that the enhanced central respiratory modulation of sympathetic activity after CIH also decreases the sympathoinhibitory component of baroreflex of rats, which may contribute to the development of hypertension. Wistar rats were exposed to CIH or normoxia (control group) for 10 days. Read More
    Contribution of the retrotrapezoid nucleus/parafacial respiratory region to the expiratory-sympathetic coupling in response to peripheral chemoreflex in rats.
    J Neurophysiol 2012 Aug 16;108(3):882-90. Epub 2012 May 16.
    Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
    Central mechanisms of coupling between respiratory and sympathetic systems are essential for the entrainment between the enhanced respiratory drive and sympathoexcitation in response to hypoxia. However, the brainstem nuclei and neuronal network involved in these respiratory-sympathetic interactions remain unclear. Here, we evaluated whether the increase in expiratory activity and expiratory-modulated sympathoexcitation produced by the peripheral chemoreflex activation involves the retrotrapezoid nucleus/parafacial respiratory region (RTN/pFRG). Read More
    Long-term facilitation of expiratory and sympathetic activities following acute intermittent hypoxia in rats.
    Acta Physiol (Oxf) 2016 Jul 3;217(3):254-66. Epub 2016 Mar 3.
    Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil.
    Aim: Acute intermittent hypoxia (AIH) promotes persistent increases in ventilation and sympathetic activity, referred as long-term facilitation (LTF). Augmented inspiratory activity is suggested as a major component of respiratory LTF. In this study, we hypothesized that AIH also elicits a sustained increase in expiratory motor activity. Read More