CLP-1 associates with MyoD and HDAC to restore skeletal muscle cell regeneration.

J Cell Sci 2010 Nov 12;123(Pt 21):3789-95. Epub 2010 Oct 12.

Department of Cell Biology, Center for Cardiovascular and Muscle Research, State University of New York Downstate Medical Center, Brooklyn, New York, NY 11203, USA.

Emerging evidence suggests that eukaryotic gene transcription is regulated primarily at the elongation stage by association and dissociation of the inhibitory protein cardiac lineage protein 1 (CLP-1/HEXIM1) from the positive transcription elongation factor b (P-TEFb) complex. It was reported recently that P-TEFb interacts with skeletal muscle-specific regulatory factor, MyoD, suggesting a linkage between CLP-1-mediated control of transcription and skeletal myogenesis. To examine this, we produced CLP-1 knockdown skeletal muscle C2C12 cells by homologous recombination, and demonstrated that the C2C12 CLP-1 +/- cells failed to differentiate when challenged by low serum in the medium. We also showed that CLP-1 interacts with both MyoD and histone deacetylases (HDACs) maximally at the early stage of differentiation of C2C12 cells. This led us to hypothesize that the association might be crucial to inhibition of MyoD-target proliferative genes. Chromatin immunoprecipitation analysis revealed that the CLP-1/MyoD/HDAC complex binds to the promoter of the cyclin D1 gene, which is downregulated in differentiated muscle cells. These findings suggest a novel transcriptional paradigm whereby CLP-1, in conjunction with MyoD and HDAC, acts to inhibit growth-related gene expression, a requirement for myoblasts to exit the cell cycle and transit to myotubes.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.073387DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964110PMC
November 2010
28 Reads

Publication Analysis

Top Keywords

c2c12 cells
8
skeletal muscle
8
myod hdac
8
clp-1
5
c2c12 clp-1
4
cells homologous
4
demonstrated c2c12
4
recombination demonstrated
4
transcriptional paradigm
4
paradigm clp-1
4
homologous recombination
4
clp-1 +/-
4
findings novel
4
challenged low
4
differentiate challenged
4
failed differentiate
4
cells failed
4
novel transcriptional
4
+/- cells
4
muscle c2c12
4

Similar Publications