In vivo selection of biocompatible alginates for islet encapsulation and subcutaneous transplantation.

Tissue Eng Part A 2010 May;16(5):1503-13

Laboratory of Experimental Surgery, Université Catholique de Louvain, Faculté de Médecine, Brussels, Belgium.

Islet encapsulation requires several properties including (1) biocompatibility, (2) immunoprotection, and (3) oxygen diffusion for islet survival and diabetes correction. New chemical alginates were tested in vivo and compared with traditional high-mannuronate and -guluronate alginates. New alginates with coupled peptide sequence (sterile lyophilized high mannuronate [SLM]-RGD3% and sterile lyophilized high guluronate [SLG]-RGD3%), to improve encapsulated cell adherence in the matrix, and alginates with a very low viscosity (VLDM7% and VLDG7%), to reduce implant size by loading a higher number of islets per volume of polymer, were implanted subcutaneously in 70 Wistar rats for comparison with alginates of high viscosity and high content of mannuronic (SLM3%) or guluronic acids (SLG3%). Permeability of alginates to 36-, 75-, and 150-kDa lectins coupled to fluorescein isothiocynate was quantified before implantation and at 2, 4, and 12 weeks after implantation. Biocompatibility (fibrosis, graft stability, immunologic infiltration by CD3/CD68 cells, and neovascularization) was assessed at each explantation time. Permeability to small molecules was found for all alginates. Impermeability to 150-kDa molecules, such as IgG, was observed only for SLM3% before implantation and was maintained up to 12 weeks after implantation. SLM3% and SLG3% demonstrated better graft stability with lower CD3/CD68 recruitment and fibrosis than the other alginates. SLM3% induced a significantly higher angiogenesis and maintained oxygen pressure at approximately 40 mm Hg for up to 4 weeks after implantation as measured by in vivo electronic paramagnetic resonance oximetry. SLM-encapsulated pig islets implanted subcutaneously in rats demonstrated no inflammatory/immunologic reactions and islets functioned for up to 60 days without immunosuppression. A traditional alginate made of high mannuronic content (SLM3%) is an adapted material to immunoprotect islets in subcutaneous tissue. No improvement was found with lower viscosity and use of GRGDSP-peptide sequence.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEA.2009.0286DOI Listing
May 2010
19 Reads

Publication Analysis

Top Keywords

weeks implantation
12
alginates
9
implanted subcutaneously
8
graft stability
8
islet encapsulation
8
lyophilized high
8
sterile lyophilized
8
high
5
slm3%
5
implantation
5
slm-encapsulated pig
4
36- 75-
4
slg3% permeability
4
guluronic acids
4
acids slg3%
4
75- 150-kda
4
permeability alginates
4
alginates 36-
4
lectins coupled
4
resonance oximetry
4

Altmetric Statistics

Similar Publications