Structural basis of X-ray-induced transient photobleaching in a photoactivatable green fluorescent protein.

J Am Chem Soc 2009 Dec;131(50):18063-5

European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex, France.

We have observed the photoactivatable fluorescent protein IrisFP in a transient dark state with near-atomic resolution. This dark state is assigned to a radical species that either relaxes to the ground state or evolves into a permanently bleached chromophore. We took advantage of X-rays to populate the radical, which presumably forms under illumination with visible light by an electron-transfer reaction in the triplet state. The combined X-ray diffraction and in crystallo UV-vis absorption, fluorescence, and Raman data reveal that radical formation in IrisFP involves pronounced but reversible distortion of the chromophore, suggesting a transient loss of pi conjugation. These results reveal that the methylene bridge of the chromophore is the Achilles' heel of fluorescent proteins and help unravel the mechanisms of blinking and photobleaching in FPs, which are of importance in the rational design of photostable variants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja907296vDOI Listing
December 2009
78 Reads
20 Citations
12.113 Impact Factor

Publication Analysis

Top Keywords

fluorescent protein
8
dark state
8
absorption fluorescence
4
fluorescence raman
4
uv-vis absorption
4
crystallo uv-vis
4
diffraction crystallo
4
raman data
4
data reveal
4
irisfp involves
4
formation irisfp
4
radical formation
4
reveal radical
4
x-ray diffraction
4
combined x-ray
4
presumably forms
4
forms illumination
4
radical presumably
4
populate radical
4
x-rays populate
4

Similar Publications