A novel transcript from the KLKP1 gene is androgen regulated, down-regulated during prostate cancer progression and encodes the first non-serine protease identified from the human kallikrein gene locus.

Prostate 2008 Mar;68(4):381-99

Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia.

Background: The kallikrein-related (KLK) serine protease, prostate specific antigen is the current marker for prostate cancer (PCa). Other members of the KLK family are also emerging as potential adjunct biomarkers for this disease. Our aim was to identify and characterize novel KLK-related genes with potential as PCa bio-markers.

Methods: Low stringency DNA screening was coupled with amplification techniques to identify novel sequences. Transcripts were examined by Northern blot, RT-PCR, and in situ hybridization analysis and in silico bioinformatics approaches. Protein characterization was performed by Western blot and confocal microscopy analysis. Gene regulation studies were performed by quantitative PCR and promoter reporter assays.

Results: We identified a novel kallikrein-related mRNA designated KRIP1 (kallikrein-related, expressed in prostate 1) which, together with the recently reported PsiKLK1 and KLK31P transcripts, is transcribed from KLKP1; a gene evolved from, and located within, the KLK locus. Significantly, in contrast to these other non-coding KLKP1 transcripts, the KRIP1 mRNA generates an approximately 18 kDa intracellular protein-the first non-serine protease identified from the KLK locus. KRIP1 mRNA is abundant only in normal prostate and is restricted to cells of epithelial origin in normal and diseased glands. Ligand binding of the androgen receptor increases transcription from the KLKP1 gene. Consistently, KRIP1 mRNA levels are lower in PCa samples compared to benign prostatic hyperplasia.

Conclusions: Transcription from KLKP1 is reduced as cells de-differentiate on the pathway to malignancy. KLKP1/KRIP1 has potential as a marker of both PCa progression and recent evolutionary events within the KLK locus.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.20685DOI Listing
March 2008
19 Reads

Publication Analysis

Top Keywords

klkp1 gene
12
krip1 mrna
12
klk locus
12
transcription klkp1
8
non-serine protease
8
protease identified
8
prostate cancer
8
gene
5
klk
5
klkp1
5
prostate
5
performed western
4
ligand binding
4
novel
4
blot confocal
4
promoter reporter
4
confocal microscopy
4
increases transcription
4
western blot
4
microscopy analysis
4

References

(Supplied by CrossRef)
Article in CA Cancer J Clin
Jemal et al.
CA Cancer J Clin 2006
Article in J Natl Cancer Inst
Thompson et al.
J Natl Cancer Inst 2003
Article in Biol Chem
Lundwall et al.
Biol Chem 2006
Article in Nat Rev Cancer
Borgono et al.
Nat Rev Cancer 2004
Article in Crit Rev Clin Lab Sci
Clements et al.
Crit Rev Clin Lab Sci 2004
Article in Biochim Biophys Acta
Kurlender et al.
Biochim Biophys Acta 2005
Article in Biol Chem
Tan et al.
Biol Chem 2006
Article in Biol Chem
Clements et al.
Biol Chem 2001
Article in Biol Chem
Paliouras et al.
Biol Chem 2006
Article in Biol Chem
Lundwall et al.
Biol Chem 2006
Article in Genomics
Olsson et al.
Genomics 2004

Similar Publications