The molecular and conformational structures of 3-chloropropanoyl chloride (CH(2)Cl-CH(2)-C(=O)Cl) have been studied by using gas-phase electron diffraction (GED) data obtained at 22 degrees C (295 K) and ab initio molecular orbital (MO) and density functional theory (DFT) calculations up to the levels of MP4(SDQ) and B3LYP using larger basis sets. Normal coordinate calculations (NCA) taking into account nonlinear vibrational effects were also used in the analyses. The title compound may have up to four low-energy conformers in the gas phase, labeled according to the position of each of the two chlorine atoms in relation to the CCC propanoyl backbone, labeling the carbonyl chlorine torsion angle first: AA, AG, GG, and GA; where A is anti (ideal C-C-C-Cl torsion angle of approximately 180 degrees) and G is gauche (ideal C-C-C-Cl torsion angle of approximately 60 degrees).