Search our Database of Scientific Publications and Authors

I’m looking for a

    Details and Download Full Text PDF:
    Ground- and excited-state double proton transfer in lumichrome/acetic acid system: theoretical and experimental approach.

    J Phys Chem A 2005 Dec;109(51):11707-14
    Faculty of Commodity Science, Poznań University of Economics, al. Niepodleglości 10, 60-967 Poznań, Poland.
    Experimental time-resolved spectral and photon counting kinetic results confirm formation of an isoalloxazinic excited state via excited-state double proton transfer (ESDPT) catalyzed by a carboxylic acid molecule that forms a hydrogen-bond complex with the parent alloxazine molecule. This isoalloxazinic tautomer manifests itself as a distinct long-lived emissive species formed only in such alloxazine derivatives that were not substituted at the N1 nitrogen atom, being a product of the excited-state reaction occurring from the alloxazinic excited state. Theoretical calculations support the idea that the ESDPT occurs by the concerted mechanism. The calculated activation barrier in the excited state is much lower than the same barrier in the ground state and even disappears for the HOMO-1 to LUMO excitation, which explains the fact that the reaction takes place in the excited-state only. The reaction rate estimated from the emission kinetics is ca. 1.4 x 10(8) dm3 mol(-1) s(-1) in ethanolic solutions of lumichrome with added acetic acid.
    PDF Download - Full Text Link
    ( Please be advised that this article is hosted on an external website not affiliated with
    Source Status ListingPossible

    Similar Publications

    Reconsideration of the excited-state double proton transfer (ESDPT) in 2-aminopyridine/acid systems: role of the intermolecular hydrogen bonding in excited states.
    Phys Chem Chem Phys 2009 Jun 23;11(21):4385-90. Epub 2009 Mar 23.
    State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China.
    In the present work, the excited-state double proton transfer (ESDPT) in 2-aminopyridine (2AP)/acid systems has been reconsidered using the combined experimental and theoretical methods. The steady-state absorption and fluorescence spectra of 2AP in different acids, such as formic acid, acetic acid, propionic acid, etc. have been measured. Read More
    In search of excited-state proton transfer in the lumichrome dimer in the solid state: theoretical and experimental approach.
    J Phys Chem A 2006 Apr;110(14):4638-48
    Faculty of Commodity Science, Poznań University of Economics, al. Niepodleglości 10, 60-967 Poznań, Poland.
    Quantum chemical density functional theory (DFT) calculations and spectral data were employed to investigate the possibility of the excited-state double proton transfer (ESDPT) in lumichrome crystals. The calculations in a lumichrome dimer predict a transfer of a proton in the first excited state, leading to a cation-anion pair. The presently reported X-ray structure of 1,3-dimethyllumichrome and its complex solid-state luminescence indicate that also in this molecule intermolecular hydrogen bonds might be involved in the photophysics. Read More
    Hydrogen-bonded complexes of lumichrome.
    J Phys Chem A 2005 Mar;109(9):1785-94
    Faculty of Commodity Science, Poznań University of Economics, al. Niepodleglości 10, 60-967 Poznań, Poland.
    Hydrogen bonds were shown to play an important role in the lumichrome photophysics and photochemistry both in solutions and in the solid state. In solutions, lumichrome can form hydrogen-bonded complexes with a variety of molecules, such as acetic acid or methanol, as supported by spectral and equilibrium studies. Photoexcitation of some hydrogen-bonded complexes, having appropriate configuration, as in the case of acetic acid, may lead to excited-state proton transfer, resulting in formation of the isoalloxazinic structure, detectable by its characteristic emission, distinct from that of the intrinsically alloxazinic lumichrome. Read More
    Acid-base equilibriums of lumichrome and its 1-methyl, 3-methyl, and 1,3-dimethyl derivatives.
    J Phys Chem A 2012 Jul 10;116(28):7474-90. Epub 2012 Jul 10.
    Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland.
    Lumichrome photophysical properties at different pH were characterized by UV-vis spectroscopy and steady-state and time-resolved fluorescence techniques, in four forms of protonation/deprotonation: neutral form, two monoanions, and dianion. The excited-state lifetimes of these forms of lumichrome were measured and discussed. The results were compared to those obtained for similar forms of alloxazine and/or isoalloxazine, and also to those of 1-methyl- and 3-methyllumichrome and 1,3-dimethyllumichrome. Read More