Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis.

Cell 2005 Jul;122(2):221-33

Experimental Oncology Department, European Institute of Oncology, Milan, Italy.

Reactive oxygen species (ROS) are potent inducers of oxidative damage and have been implicated in the regulation of specific cellular functions, including apoptosis. Mitochondrial ROS increase markedly after proapoptotic signals, though the biological significance and the underlying molecular mechanisms remain undetermined. P66Shc is a genetic determinant of life span in mammals, which regulates ROS metabolism and apoptosis. We report here that p66Shc is a redox enzyme that generates mitochondrial ROS (hydrogen peroxide) as signaling molecules for apoptosis. For this function, p66Shc utilizes reducing equivalents of the mitochondrial electron transfer chain through the oxidation of cytochrome c. Redox-defective mutants of p66Shc are unable to induce mitochondrial ROS generation and swelling in vitro or to mediate mitochondrial apoptosis in vivo. These data demonstrate the existence of alternative redox reactions of the mitochondrial electron transfer chain, which evolved to generate proapoptotic ROS in response to specific stress signals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2005.05.011DOI Listing
July 2005
277 Citations
32.242 Impact Factor

Publication Analysis

Top Keywords

mitochondrial ros
12
electron transfer
12
oxygen species
8
mitochondrial electron
8
mitochondrial apoptosis
8
reactive oxygen
8
transfer chain
8
mitochondrial
7
ros
6
p66shc
5
apoptosis
5
p66shc redox
4
mediate mitochondrial
4
span mammals
4
apoptosis vivo
4
mammals regulates
4
regulates ros
4
ros metabolism
4
life span
4
apoptosis report
4

Similar Publications