Catalase and peroxiredoxin 5 protect Xenopus embryos against alcohol-induced ocular anomalies.

Invest Ophthalmol Vis Sci 2004 Jan;45(1):23-9

Institute of Molecular Biology and Open Laboratory of Chemical Biology, The University of Hong Kong, Hong Kong, China.

Purpose: To study the molecular mechanisms underlying alcohol-induced ocular anomalies in Xenopus embryos.

Methods: Xenopus embryos were exposed to various concentrations (0.1%-0.5%) of alcohol, and the subsequent effects in eye development and in eye marker gene expression were determined. To investigate the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in fetal alcohol syndrome (FAS)-associated ocular injury, two antioxidant enzymes, catalase and peroxiredoxin 5, were overexpressed in the two blastomeres of the two-cell stage Xenopus embryos.

Results: Exposure of Xenopus embryos to alcohol during eye development produced marked gross ocular anomalies, including microphthalmia, incomplete closure of the choroid fissure, and malformation of the retina in 40% of the eyes examined. In parallel, alcohol (0.1%-0.5%) dose dependently and significantly reduced the expression of several eye marker genes, of which TBX5, VAX2, and Pax6 were the most vulnerable. Overexpression of catalase and of cytosolic and mitochondrial peroxiredoxin 5 restored the expression of these alcohol-sensitive eye markers and significantly decreased the frequency of ocular malformation from 39% to 21%, 19%, and 13% respectively. All these enzymes reduced alcohol-induced ROS production, but only peroxiredoxin 5 inhibited RNS formation in the alcohol-treated embryos.

Conclusions: The results suggest that oxidative and nitrosative stresses both contribute to alcohol-induced fetal ocular injury.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.03-0550DOI Listing
January 2004
2 Reads

Publication Analysis

Top Keywords

xenopus embryos
12
ocular anomalies
12
ocular injury
8
catalase peroxiredoxin
8
alcohol-induced ocular
8
eye marker
8
eye development
8
ocular
6
eye
5
xenopus
5
eyes examined
4
parallel alcohol
4
examined parallel
4
40% eyes
4
malformation retina
4
fissure malformation
4
retina 40%
4
alcohol 01%-05%
4
reduced expression
4
expression eye
4

Similar Publications