Publications by authors named "Zoran Kitanovski"

9 Publications

  • Page 1 of 1

Nitrated monoaromatic hydrocarbons (nitrophenols, nitrocatechols, nitrosalicylic acids) in ambient air: levels, mass size distributions and inhalation bioaccessibility.

Environ Sci Pollut Res Int 2020 Jun 11. Epub 2020 Jun 11.

Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.

Nitrated monoaromatic hydrocarbons (NMAHs) are ubiquitous in the environment and an important part of atmospheric humic-like substances (HULIS) and brown carbon. They are ecotoxic and with underresearched toxic potential for humans. NMAHs were determined in size-segregated ambient particulate matter collected at two urban sites in central Europe, Ostrava and Kladno, Czech Republic. The average sums of 12 NMAHs (ΣNMAH) measured in winter PM samples from Ostrava and Kladno were 102 and 93 ng m, respectively, and 8.8 ng m in summer PM samples from Ostrava. The concentrations in winter corresponded to 6.3-7.3% and 2.6-3.1% of HULIS-C and water-soluble organic carbon (WSOC), respectively. Nitrocatechols represented 67-93%, 61-73% and 28-96% of NMAHs in PM samples collected in winter and summer at Ostrava and in winter at Kladno, respectively. The mass size distribution of the targeted substance classes peaked in the submicrometre size fractions (PM), often in the PM size fraction especially in summer. The bioaccessible fraction of NMAHs was determined by leaching PM samples in two simulated lung fluids, Gamble's solution and artificial lysosomal fluid (ALF). More than half of NMAH mass is found bioaccessible, almost complete for nitrosalicylic acids. The bioaccessible fraction was generally higher when using ALF (mimics the chemical environment created by macrophage activity, pH 4.5) than Gamble's solution (pH 7.4). Bioaccessibility may be negligible for lipophilic substances (i.e. log K > 4.5).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-09540-3DOI Listing
June 2020

Toxic potentials of particulate and gaseous air pollutant mixtures and the role of PAHs and their derivatives.

Environ Int 2020 06 20;139:105634. Epub 2020 May 20.

RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic. Electronic address:

Background: Air pollution, which represents a major environmental risk to human health, comprises a complex mixture of compounds where only little is known about its specific toxicities.

Objectives: This study examined the specific toxicities associated with ambient air pollutant mixtures with respect to gas/particle partitioning, particulate matter (PM) size, pollutant polarity and bioaccessibility from PM, and evaluated the contribution of PAHs and their oxygenated and nitrated derivatives (OPAHs, NPAHs).

Methods: Air samples (gas phase, PM and size-segregated PM), were collected at urban (in winter and summer) and background (winter) sites in the Czech Republic. The total and bioaccessible concentrations were addressed using organic solvent extraction and simulated lung fluid extraction, respectively. Organic extracts were also further fractionated according to polarity. Aryl hydrocarbon receptor (AhR)-mediated activity, anti-/estrogenicity, anti-/androgenicity, thyroid receptor (TR)-mediated activity and cytotoxicity for bronchial cells were determined by human cell-based in vitro bioassays. The contribution of studied compounds to observed effects was assessed by both modelling and reconstructing the mixtures.

Results: Significant effects were detected in the sub-micrometre size fraction of PM (estrogenicity, androgenicity, TR- and AhR-mediated activities) and in the gas phase (TR-mediated activity, antiandrogenicity). Compounds interacting with TR showed high bioaccessibility to simulated lung fluid. Relatively lower bioaccessibility was observed for estrogenicity and AhR-mediated activity. However, the toxicity testing of reconstructed mixtures revealed that the targeted pollutants are not the main contributors, except for urban PM air pollution in winter, where they accounted for 5-88% of several effects detected in the original complex environmental samples.

Discussion: Studied toxicities were mostly driven by polar compounds largely attributed to the easily inhalable PM, which is of high relevance for human health risk assessment. Except of parent PAHs in some cases, the targeted compounds contributed to the detected effects mostly to a relatively low extent implying huge data gaps in terms of endocrine disruptive potencies of targeted substances and the significance of other polar compounds present in ambient air.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2020.105634DOI Listing
June 2020

Oxygenated and Nitrated Polycyclic Aromatic Hydrocarbons in Ambient Air-Levels, Phase Partitioning, Mass Size Distributions, and Inhalation Bioaccessibility.

Environ Sci Technol 2020 03 11;54(5):2615-2625. Epub 2020 Feb 11.

Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany.

Among the nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are some of the most hazardous substances to public health, mainly because of their carcinogenicity and oxidative potential. Despite these concerns, the concentrations and fate of NPAHs and OPAHs in the atmospheric environment are largely unknown. Ambient air concentrations of 18 NPAHs, 5 quinones, and 5 other OPAHs were determined at two urban and one regional background sites in central Europe. At one of the urban sites, the total (gas and particulate) concentrations of ΣOPAHs were 10.0 ± 9.2 ng/m in winter and 3.5 ± 1.6 ng/m in summer. The gradient to the regional background site exceeded 1 order of magnitude. ΣNPAH concentrations were typically 1 order of magnitude lower than OPAHs. Among OPAHs, 9-fluorenone and (9,10)-anthraquinone were the most abundant species, accompanied by benzanthrone in winter. (9,10)-Anthraquinone represented two-thirds of quinones. We found that a large fraction of the target substance particulate mass was carried by submicrometer particles. The derived inhalation bioaccessibility in the PM size fraction is found to be ≈5% of the total ambient concentration of OPAHs and up to ≈2% for NPAHs. For 9-fluorenone and (9,10)-anthraquinone, up to 86 and 18%, respectively, were found at the rural site. Our results indicate that water solubility could function as a limiting factor for bioaccessibility of inhaled particulate NPAHs and OPAHs, without considerable effect of surfactant lipids and proteins in the lung lining fluid.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b06820DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307896PMC
March 2020

Anti-inflammatory effects of cinnamon extract and identification of active compounds influencing the TLR2 and TLR4 signaling pathways.

Food Funct 2018 Nov;9(11):5950-5964

Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany.

Purpose: Inflammatory processes are involved in many diseases. The bark of Cinnamomum verum and its extracts are well known for anti-inflammatory effects, but the underlying active compounds and chemical mechanisms are not yet fully identified. The objective of this study was to elucidate how cinnamon extract, specifically active compounds, and their combinations influence the signaling pathways of inflammation, especially through toll-like receptors TLR2 and TLR4.

Methods: Bioassay-guided fractionation was performed for standard ethanolic cinnamon extract using high performance liquid chromatography followed by compound identification in the determined active fractions by high-resolution mass spectrometry and gas chromatography-mass spectrometry. THP-1 monocytes were pre-incubated with cinnamon extract, cinnamon fractions or its compounds and stimulated with lipopolysaccharides (LPS), followed by determination of interleukin 8 (IL-8) secretion, and phosphorylation of protein kinase B (Akt), nuclear factor (NF)-κB inhibitor alpha (IκBα) and p38. Furthermore, testing was performed in stimulated HEK-TLR2 and HEK-TLR4 reporter cells for direct receptor agonistic effects.

Results: Among the identified compounds, trans-cinnamaldehyde and p-cymene significantly reduced the LPS-dependent IL-8 secretion in THP-1 monocytes. Synergistic anti-inflammatory effects were observed for combinations of trans-cinnamaldehyde with p-cymene, cinnamyl alcohol or cinnamic acid. Moreover, cinnamon extract as well as trans-cinnamaldehyde and p-cymene mitigated the phosphorylation of Akt and IκBα.

Conclusions: Trans-cinnamaldehyde and p-cymene contribute to the strong anti-inflammatory effects of cinnamon extract. Furthermore, our experiments indicate that also synergistic effects among compounds that do not exhibit anti-inflammatory effects themselves might be present to positively influence the beneficial effects of cinnamon bark extract.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8fo01286eDOI Listing
November 2018

Liquid chromatography tandem mass spectrometry method for characterization of monoaromatic nitro-compounds in atmospheric particulate matter.

J Chromatogr A 2012 Dec 12;1268:35-43. Epub 2012 Oct 12.

Laboratory for Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.

Nitrogen-containing organic compounds in the atmosphere have drawn attention owing to their impact on aerosol chemistry and physics and their potential adverse effects on the biosphere. Among them, nitrocatechols and their homologs have recently been associated with biomass burning. In the present study, nitrocatechols, nitrophenols, nitroguaiacols and nitrosalicylic acids (NSAs) were simultaneously quantified for the first time by using a new analytical method based on liquid chromatography/tandem mass spectrometry, which was systematically optimized and validated. Several analyte specific issues regarding the sample preparation and chromatographic analysis were addressed in order to ensure method sensitivity, precision, and accuracy. Sample matrix effects were thoroughly investigated in order to ensure method specificity. The method was found to be sensitive with limits of detection ranging from 0.1 to 1.0 μg L(-1), and with accuracy generally between 90 and 104%. The relative standard deviations for repeatability and intermediate precision were better than 4% and 9%, respectively. The method was applied to the analysis of winter and summer PM(10) samples from the city of Ljubljana, Slovenia. Aerosol concentrations as high as 152 and 134 ng m(-3) were obtained for the major aerosol nitro-aromatics: 4-nitrocatechol (4NC) and methyl-nitrocatechols (MNCs), respectively. Up to 500-times higher concentrations of 4NC and MNCs were found in winter compared to summer aerosols. The correlation analysis for winter samples showed that 4NC, MNCs, and NSAs are strongly inter-correlated (R(2)=0.84-0.96). Significant correlations between these analytes and anhydrosugars support their proposed origin from biomass burning. The studied nitro-aromatics were found to constitute a non-negligible fraction (around 1%) of the organic carbon.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2012.10.021DOI Listing
December 2012

Development of a liquid chromatographic method based on ultraviolet-visible and electrospray ionization mass spectrometric detection for the identification of nitrocatechols and related tracers in biomass burning atmospheric organic aerosol.

Rapid Commun Mass Spectrom 2012 Apr;26(7):793-804

Laboratory for Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia.

Rationale: Studying the chemical composition of biomass burning aerosol (BBA) is very important in order to assess their impact on the climate and the biosphere. In the present study, we focus on the characterization of some newly recognized biomass burning aerosol tracers including methyl nitrocatechols, nitroguaiacols and 4-nitrocatechol, but also on nitrophenols, methyl nitrophenols and nitrosalicylic acids, using liquid chromatography tandem mass spectrometry.

Methods: For the purpose of their separation and detection in atmospheric aerosol, a new chromatographic method was initially developed based on reversed-phase chromatography coupled with ultraviolet/visible (UV/Vis) detection. The method was afterwards transferred to a liquid chromatography/electrospray ionization linear ion trap mass spectrometry (LC/ESI-LITMS) system in order to identify the targeted analytes in winter aerosol from the city of Maribor, Slovenia, using their chromatographic retention times and characteristic (-)ESI product ion (MS(2) ) spectra.

Results: The fragmentation patterns of analytes obtained with LITMS are presented. Additional nitro-aromatic compounds (m/z 168 and 182) closely related to the targeted nitrocatechols and nitroguaiacols were detected in the aerosol. According to their MS(2) spectra these compounds could be attributed to methyl homologues of methyl nitrocatechols and nitroguaiacols.

Conclusions: The proposed LC/MS method results in a better separation and specificity for the targeted analytes. Several nitro-aromatic compounds were detected in urban BBA. The LC/MS peak intensity of the newly detected methyl nitrocatechols and nitroguaiacols is comparable to that of the methyl nitrocatechols, which also qualifies them as suitable molecular tracers for secondary biomass burning aerosol.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.6170DOI Listing
April 2012

Comment on "hydroxycarboxylic Acid-derived organosulfates: synthesis, stability and quantification in ambient aerosol".

Environ Sci Technol 2011 Oct 28;45(20):9109-10; discussion 9111. Epub 2011 Sep 28.

Laboratory for Analytical Chemistry, National Institute of Chemistry, Hajdrihova, SI-1001 Ljubljana, Slovenia.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/es202517dDOI Listing
October 2011

Characterization of carboxylic acids in atmospheric aerosols using hydrophilic interaction liquid chromatography tandem mass spectrometry.

J Chromatogr A 2011 Jul 14;1218(28):4417-25. Epub 2011 May 14.

Laboratory for Analytical Chemistry, National Institute of Chemistry, Ljubljana, Slovenia.

A sensitive hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry (HILIC/ESI-MS/MS) method was developed for determination of selected aliphatic (i.e. malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, maleic, fumaric, glycolic and pyruvic acid), alicyclic (i.e. cis-pinonic and pinic acid) and aromatic (i.e. trimesic, phthalic acid and its isomers) carboxylic acids. Analytes were separated on an amide column using a gradient elution with a 10mM constant ionic strength mobile phase containing acetonitrile and aqueous ammonium acetate buffer (pH 5.0). The influence of the buffer type, pH, polar modifier and temperature on analyte retention under HILIC was studied. Static sonication-assisted solvent extraction was optimized for sample preparation prior to analysis. The recoveries obtained were higher than 90% for most analytes. The method was proven to be sensitive with limits of detection ranged from 0.03 to 16.0 μg/L in selected reaction monitoring mode (SRM). The repeatability and intermediate precision of the method, expressed as RSD (%) of the peak area ratio between analytes and their internal standards were generally lower than 5%. The method was successfully applied for determination of the studied acids in samples of ambient aerosol particles. A big advantage of the new method is also its ability to detect and separate the isobaric compounds of the selected carboxylic acids. Our results demonstrate that the method is specific and sensitive for the determination of a wider range of polar carboxylic acids at low concentrations in complex samples of aerosol particles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2011.05.020DOI Listing
July 2011

Development of an ion-pair reversed-phase HPLC method with indirect UV detection for determination of phosphates and phosphites as impurities in sodium risedronate.

J AOAC Int 2010 Jul-Aug;93(4):1113-20

University Ss. Cyril and Methodius, Center for Drug Quality Control, Faculty of Pharmacy, Vodnjanska 17, Skopje, Macedonia.

A method based on RP-HPLC with indirect UV detection was developed for the determination of phosphates and phosphites as impurities in sodium risedronate. RP separation of the phosphates and phosphites was achieved by adding tetrabutylammonium hydroxide as an ion-pairing agent in the mobile phase. Potassium hydrogen phthalate was added to the mobile phase as an ionic chromophore in order to obtain high background absorption of the mobile phase. Separation was performed on a C18 column using a mixture of pH 8.2 buffer (containing 0.5 mM tetrabutylammonium hydroxide and 1 mM phthalate) and acetonitrile (95 + 5, v/v) as the mobile phase, with indirect UV detection at 248 nm. The validation of the method included determination of specificity/selectivity, linearity, LOD, LOQ, accuracy, precision, and robustness. The LOD was 0.86 microg/mL for phosphates and 0.76 microg/mL for phosphites. The LOQ was 2.60 microg/mL for phosphates and 2.29 microg/mL for phosphites. The developed method is suitable for quantitative determination of phosphates and phosphites as impurities in QC of sodium risedronate.
View Article and Find Full Text PDF

Download full-text PDF

Source
October 2010