Publications by authors named "Ziren Su"

56 Publications

Anti-Hyperuricemic and Nephroprotective Effects of Dihydroberberine in Potassium Oxonate- and Hypoxanthine-Induced Hyperuricemic Mice.

Front Pharmacol 2021 20;12:645879. Epub 2021 Apr 20.

School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.

Phellodendri Chinese Cortex has long been used to treat hyperuricemia and gout. Berberine (BBR), its characteristic ingredient, has also been shown to be effective in alleviating monosodium urate crystals-triggered gout inflammation and . Dihydroberberine (DHB) is a hydrogenated derivative of BBR that showed improved efficacy on many metabolic disorders. However, its anti-hyperuricemia effect remains underexplored. In the present work, the hypouricemic and renoprotective effects of DHB on hyperuricemic mice were investigated. The hyperuricemic mice model was induced by intraperitoneal injection of potassium oxonate (PO, 300 mg/kg) combined with intragastric administration of hypoxanthine (HX, 300 mg/kg) for 7 days. Different dosages of DHB (25, 50 mg/kg), BBR (50 mg/kg) or febuxostat (Feb, 5 mg/kg) were orally given to mice 1 h after modeling. The molecular docking results showed that DHB effectively inhibited xanthine oxidase (XOD) by binding with its active site. , DHB exhibited significant XOD inhibitory activity (IC value, 34.37 μM). The results showed that DHB had obvious hypouricemic and renoprotective effects in hyperuricemic mice. It could not only lower the uric acid and XOD levels in serum, but also suppress the activities of XOD and adenosine deaminase (ADA) in the liver. Furthermore, DHB noticeably down-regulated the renal mRNA and protein expression of XOD. Besides, DHB remarkably and dose-dependently ameliorated renal damage, as evidenced by considerably reducing serum creatinine and blood urea nitrogen (BUN) levels, inflammatory cytokine (TNF-α, IL-1β, IL-6 and IL-18) levels and restoring kidney histological deteriorations. Further mechanistic investigation showed that DHB distinctly down-regulated renal mRNA and protein levels of URAT1, GLUT9, NOD-like receptor 3 (NLRP3), apoptosis-associated speck-like (ASC), caspase-1 and IL-1β. Our study revealed that DHB had outstanding hypouricemic and renoprotective effects via suppressing XOD, URAT1, GLUT9 and NLRP3 inflammasome activation in the kidney.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2021.645879DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093860PMC
April 2021

Gut Microbiota-Mediated Transformation of Coptisine Into a Novel Metabolite 8-Oxocoptisine: Insight Into Its Superior Anti-Colitis Effect.

Front Pharmacol 2021 30;12:639020. Epub 2021 Mar 30.

School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.

Coptisine (COP) is a bioactive isoquinoline alkaloid derived from Franch, which is traditionally applied for the management of colitis. However, the blood concentration of COP was extremely low, and its gut microbiota-mediated metabolites were thought to contribute to its prominent bioactivities. To comparatively elucidate the protective effect and underlying mechanism of COP and its novel gut microbiota metabolite (8-oxocoptisine, OCOP) against colitis, we used dextran sulfate sodium (DSS) to induce colitis in mice. Clinical symptoms, microscopic alternation, immune-inflammatory parameters for colitis were estimated. The results indicated that OCOP dramatically ameliorated disease activity index (DAI), the shortening of colon length and colonic histopathological deteriorations. OCOP treatment also suppressed the mRNA expression and release of inflammatory mediators (TGF-β, TNF-α, IL-6, IL-18, IL-1β and IFN-γ) and elevated the transcriptional and translational levels of anti-inflammatory cytokine (IL-10) as well as the mRNA expression levels of adhesion molecules ( and ). Besides, the activation of NF-κB pathway and NLRP3 inflammasome was markedly inhibited by OCOP. Furthermore, OCOP displayed superior anti-colitis effect to COP, and was similar to MSZ with much smaller dosage. Taken together, the protective effect of OCOP against DSS-induced colitis might be intimately related to inhibition of NF-κB pathway and NLRP3 inflammasome. And the findings indicated that OCOP might have greater potential than COP to be further exploited as a promising candidate in the treatment of colitis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2021.639020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042337PMC
March 2021

Therapeutic role of d-pinitol on experimental colitis via activating Nrf2/ARE and PPAR-γ/NF-κB signaling pathways.

Food Funct 2021 Mar 24;12(6):2554-2568. Epub 2021 Feb 24.

School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.

Ulcerative colitis is a recrudescent intestinal inflammation coupled with diarrhea, weight loss, pus, and blood stool, which seriously impacts the quality of patient life. d-Pinitol, which can be a food supplement isolated from the food plant-like soybeans, Ceratonia siliqua Linn and Bruguiera gymnorrhiza, has been proved to show anti-oxidative and anti-inflammatory effects. However, the potential mechanism of d-pinitol still remains ill-defined contemporarily. In the current study, the therapeutic effect and potential mechanisms of d-pinitol against colitis were investigated. Oxidative stress and inflammation of experimental colitis were caused by 3% DSS treatment once daily for 7 days. During DSS treatment, the mice of the positive drug group and three other groups were orally administered SASP or d-pinitol once daily. Clinical symptoms were analyzed, and macroscopic scores were calculated. The levels of oxidative and inflammatory cytokines were measured using assay kits and RT-PCR. Additionally, the protein expression of the Nrf2/ARE pathway and PPAR-γ was measured by Western blot. Results showed that d-pinitol enormously alleviated DSS-induced bodyweight loss, colon shortening, and histological injuries, achieving a therapeutic efficacy superior to SASP. Moreover, the oxidative stress and colonic inflammatory response were mitigated. d-pinitol not only significantly activated the Nrf2/ARE signaling pathway via facilitating the translocation of Nrf2 from sitoplazma to cytoblast, upregulating the protein expression levels of GCLC, GCLM, HO-1, and NQO1, but also improved the PPAR-γ level by binding to the active site of PPAR-γ, when suppressing NF-κB p65 and IκBα phosphorylation. In conclusion, d-pinitol exhibited a dramatic anti-colitis efficacy by activating the Nrf2/ARE pathway and PPAR-γ. Hence, d-pinitol may be a promising therapeutic drug against UC in the future.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0fo03139aDOI Listing
March 2021

Oxyberberine, an absorbed metabolite of berberine, possess superior hypoglycemic effect via regulating the PI3K/Akt and Nrf2 signaling pathways.

Biomed Pharmacother 2021 May 30;137:111312. Epub 2021 Jan 30.

School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China. Electronic address:

Berberine (BBR) is a promising anti-diabetic isoquinoline alkaloid from Rhizoma coptidis, while its bioavailability was extremely low. Here, the existing form and pharmacokinetics of BBR were comparatively characterized in conventional and antibiotic-induced pseudo germ-free (PGF) rats. Furthermore, we comparatively investigated the antidiabetic effect and potential mechanism of BBR and its intestinal oxidative metabolite oxyberberine (OBB) in STZ-induced diabetic rats. Results showed that BBR and OBB existed mainly as protein-bound form in blood, while protein-bound OBB was significantly depleted in PGF rats. Treatment with OBB and BBR effectively decreased clinical symptoms of diabetic rats, reduced blood glucose level, ameliorated the pancreatic damage, and mitigated oxidative stress and inflammatory markers. However, the anti-diabetes effect of BBR was obviously compromised by antibiotics. In addition, OBB exerted superior anti-diabetes effect to BBR of the same dose, significantly up-regulated the mRNA expression of Nrf2 signaling pathway and substantially promoted the pancreatic levels of PI3K/Akt signaling pathway. In conclusion, BBR and its absorbed oxidative metabolite OBB were mainly presented and transported in the protein-bound form in vivo. The gut microbiota may play an important role in the anti-diabetes effect of BBR through transforming itself into the superior hypoglycemic metabolite OBB. OBB possessed favorable hypoglycemic and pancreatic β-cells protective effects, which may stand a huge potential to be further developed into a promising anti-diabetes candidate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2021.111312DOI Listing
May 2021

Coptisine ameliorates DSS-induced ulcerative colitis via improving intestinal barrier dysfunction and suppressing inflammatory response.

Eur J Pharmacol 2021 Apr 27;896:173912. Epub 2021 Jan 27.

Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, 519041, PR China. Electronic address:

Ulcerative colitis (UC), as an autoimmune disease, has been troubling human health for many years. Up to now, the available treatments remain unsatisfactory. Rhizoma Coptidis has been widely applied to treat gastrointestinal diseases in China for a long time, and coptisine (COP) is identified as one of its major active components. This study aimed to evaluate the bioactivity of COP on dextran sulfate sodium (DSS)-induced mice colitis and clarify the potential mechanism of action. The results revealed that COP treatment markedly alleviated DSS-induced clinical symptoms by relieving body weight loss and the disease activity index (DAI) score. Specifically, the colon length in the COP (50 and 100 mg/kg) groups were obviously longer than that in the DSS group (7.21 ± 0.34, 8.59 ± 0.45 cm vs. 6.71 ± 0.59 cm, P < 0.01). HE staining analysis revealed that COP treatment significantly protected the integrity of intestinal barrier and alleviated inflammatory cells infiltration. Western blot assay confirmed that COP notably improved the intestinal epithelial barrier function by enhancing the expressions of colonic tight junction proteins and inhibited the expressions of apoptosis-related proteins. In addition, COP treatment remarkably suppressed the levels of colonic myeloperoxidase (MPO), adhesion molecules and pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6 and IL-17), while enhanced IL-10 and TGF-β. The mechanism anti-inflammatory of COP might be related to inhibiting the phosphorylation of IκBα, and the translocation of NF-κB p65 from cytoplasm to nucleus. In summary, the study indicated that COP ameliorated DSS-induced colitis, at least partly through maintaining the integrity of intestinal epithelial barrier, inhibiting apoptosis and inflammatory response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2021.173912DOI Listing
April 2021

Apoptotic activities of brusatol in human non-small cell lung cancer cells: Involvement of ROS-mediated mitochondrial-dependent pathway and inhibition of Nrf2-mediated antioxidant response.

Toxicology 2021 03 16;451:152680. Epub 2021 Jan 16.

Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, P.R. China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, P.R. China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, P.R. China.

Brusatol occurs as a characteristic bioactive principle of Brucea javanica (L.) Merr., a traditional medicinal herb frequently employed to tackle cancer in China. This work endeavored to unravel the potential anti-cancer activity and action mechanism of brusatol against non-small cell lung cancer (NSCLC) cell lines. The findings indicated that brusatol remarkably inhibited the growth of wild-type NSCLC cell lines (A549 and H1650) and epidermal growth factor receptor-mutant cell lines (PC9 and HCC827) in a dose- and time-related fashion, and profoundly inhibited the clonogenic capability and migratory capacity of PC9 cells. Treatment with brusatol resulted in significant apoptosis in PC9 cells, as evidenced by Hoechst 33342 staining and flow cytometric analysis. The apoptotic effect was closely related to induction of G0-G1 cell cycle arrest, stimulation of reactive oxygen species (ROS) and malondialdehyde, decrease of glutathione levels and disruption of mitochondrial membrane potential. Furthermore, pretreatment with N-acetylcysteine, a typical ROS scavenger, markedly ameliorated the brusatol-induced inhibition of PC9 cells. Western blotting assay indicated that brusatol pronouncedly suppressed the expression levels of mitochondrial apoptotic pathway-associated proteins Bcl-2 and Bcl-xl, accentuated the expression of Bax and Bak, and upregulated the protein expression of XIAP, cleaved caspase-3/pro caspase-3, cleaved caspase-8/pro caspase-8, and cleaved PARP/total PARP. In addition, brusatol significantly suppressed the expression of Nrf2 and HO-1, and abrogated tBHQ-induced Nrf2 activation. Combinational administration of brusatol with four chemotherapeutic agents exhibited marked synergetic effect on PC9 cells. Together, the inhibition of PC9 cells proliferation by brusatol might be intimately associated with the modulation of ROS-mediated mitochondrial-dependent pathway and inhibition of Nrf2-mediated antioxidant response. This novel insight might provide further evidence to buttress the antineoplastic efficacy of B. javanica, and support a role for brusatol as a promising anti-cancer candidate or adjuvant to current chemotherapeutic medication in the therapy of EGFR-mutant NSCLC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2021.152680DOI Listing
March 2021

(+/-)-Borneol Reverses Mitoxantrone Resistance against P-Glycoprotein.

J Chem Inf Model 2021 01 30;61(1):252-262. Epub 2020 Dec 30.

The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.

P-Glycoprotein (Pgp) is a main factor contributing to multidrug resistance and the consequent failure of chemotherapy. Overcoming Pgp efflux is a strategy to improve the efficacy of drugs. (+)-Borneol (BNL1) and (-)-borneol (BNL2) interfere and inhibit Pgp, and thus, the accumulation of drugs increases in cells. However, it is not clear yet how they play the inhibitory effect against Pgp. In this work, the effect and molecular mechanism of borneol enantiomers in reversing mitoxantrone (MTO) resistance against Pgp were explored by and approaches. Chemosensitizing potential tests showed that BNLs could enhance the efficacy of MTO in MES-SA/MX2 cells, and BNL2 exhibited a stronger potential. The protein expression of Pgp was decreased to some extent by the administration of BNLs. Molecular docking revealed that BNLs could reduce the binding affinity between MTO and Pgp. The results were consistent with the chemosensitizing potential test and were supported by molecular dynamics (MD) simulations. Molecular docking also suggested that BNLs preferred to bind in the drug-binding pocket rather than the nucleotide-binding domain of inward-facing Pgp. The occupied space of BNLs had an evident distance from that of MTO, which was further verified by the conformational analysis after MD simulations. The decomposition of binding free energies revealed the key amino acid residues (GLN195, SER196, TRP232, PHE343, SER344, GLY346, and GLN347) for BNLs to reverse MTO resistance. The results provide an insight into the mechanism through which BNLs reduce the MTO resistance against inward-facing Pgp in the drug-binding pocket through noncompetitive inhibition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.0c00892DOI Listing
January 2021

Anti-Inflammatory Effects of Fruits on Dextran Sulfate Sodium- (DSS-) Induced Ulcerative Colitis in Mice by Regulating Gut Microbiota and Suppressing NF-B Pathway.

Biomed Res Int 2020 5;2020:8893621. Epub 2020 Dec 5.

School of Pharmaceutical Science (Mathematical Engineering Academy of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou 510006, China.

Materials And Methods: The chemical compositions of EFH were identified using LC-ESI-MS. The mice with 3% DSS-induced UC were administered EFH (200, 400, and 800 mg/kg), sulfasalazine (SASP, 200 mg/kg), and azathioprine (AZA, 13 mg/kg) for 10 days via daily gavage. The colonic inflammation was evaluated by the disease activity index (DAI), colonic length, histological scores, and levels of inflammatory mediators. The gut microbiota was characterized by 16S rRNA gene sequencing and analysis.

Results: LC-ESI-MS analysis showed that EFH was rich in alkaloids and flavones. The results indicated that EFH significantly improved the DAI score, relieved colon shortening, and repaired pathological colonic variations in colitis. In addition, proteins in the NF-B pathway were significantly inhibited by EFH. Furthermore, EFH recovered the diversity and balance of the gut microbiota.

Conclusions: EFH has protective effects against DSS-induced colitis by keeping the balance of the gut microbiota and suppressing the NF-B pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2020/8893621DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735845PMC
June 2021

The anti-hepatocellular carcinoma effect of Brucea javanica oil in ascitic tumor-bearing mice: The detection of brusatol and its role.

Biomed Pharmacother 2021 Feb 16;134:111122. Epub 2020 Dec 16.

School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China. Electronic address:

Brucea javanica oil (BJO), one of the main products of Brucea javanica, has been widely used in treating different kinds of malignant tumors. Quassinoids are the major category of anticancer phytochemicals of B. javanica. However, current researches on the anti-cancer effect of BJO mainly focused on oleic acid and linoleic acid, the common major components of dietary edible oils, essential and characteristic components of B. javanica like quassinoids potentially involved remained unexplored. In the current investigation, we developed an efficient HPLC method to detect brusatol, a characteristic quassinoid, and comparatively scrutinized the anti-hepatocellular carcinoma (anti-HCC) effect of BJO, brusatol-free BJO (BF-BJO), and brusatol-enriched BJO (BE-BJO) against hepatoma 22 (H22) in mice. High-performance liquid chromatography (HPLC) was utilized to identify the components in BJO. BE-BJO was extracted with 95 % ethanol. The anti-tumor effect of BJO, BF-BJO and BE-BJO was comparatively investigated, and the potential underlying mechanism was explored in H22 ascites tumor-bearing mice. The results indicated that BJO and BE-BJO significantly prolonged the survival time of H22 ascites tumor-bearing mice, while BF-BJO exhibited no obvious effect. BJO and BE-BJO exhibited pronounced anti-HCC activity by suppressing the growth of implanted hepatoma H22 in mice, including ascending weight, abdominal circumference, ascites volume and cancer cell viability, with a relatively wide margin of safety. BJO and BE-BJO significantly induced H22 cell apoptosis by upregulating the miRNA-29b gene level and p53 expression. Furthermore, BJO and BE-BJO treatment substantially downregulated Bcl-2 and mitochondrial Cytochrome C protein expression, and upregulated expression levels of Bax, Bad, cytosol Cytochrome C, caspase-3 (cleaved), caspase‑9 (cleaved), PARP and PARP (cleaved) to induce H22 cells apoptosis. Brusatol was detected in BJO and found to be one of its major active anti-HCC components, rather than fatty acids including oleic acid and linoleic acid. The anti-HCC effect of BJO and BE-BJO was intimately associated with the activation of miRNA-29b, p53-associated apoptosis and mitochondrial-related pathways. Our study gained novel insight into the material basis of BJO in the treatment of HCC, and laid a foundation for a novel specific standard for the quality evaluation of BJO and its commercial products in terms of its anti-cancer application.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2020.111122DOI Listing
February 2021

β-patchoulene improves lipid metabolism to alleviate non-alcoholic fatty liver disease via activating AMPK signaling pathway.

Biomed Pharmacother 2021 Feb 16;134:111104. Epub 2020 Dec 16.

School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Dongguan, 523808, China. Electronic address:

Non-alcoholic fatty liver disease (NAFLD) has been a leading cause of chronic metabolic disease, seriously posing healthy burdens to the public, whereas interventions available for it are limited to date. Patchouli oil had been reported to attenuate hepatic steatosis in our previous study. β-patchoulene (β-PAE) is a representative component separated from patchouli oil with multiple activities, but its effect against NAFLD is still unknown. To investigate the effect and potential mechanism of β-PAE on NAFLD, we used high fat diet (HFD) in vivo and free fatty acid (FFA) in vitro to induce hepatic steatosis in rats and L02 cells, respectively. Histological examination was evaluated via Hematoxylin-eosin and oil red O staining. The parameters for hepatic steatosis were estimated via biochemical kits, western blotting and quantitative real-time PCR. Compound C, the inhibitor of AMPK, was applied further to examine the precise mechanism of β-PAE on NAFLD. Our results indicated that β-PAE significantly attenuated HFD-induced weight gain, hepatic injury, lipid deposition in serum and hepatic tissue as well as FFA induced-lipid accumulation. Besides, β-PAE markedly improved the expression of AMP-activated protein kinase (AMPK) and its downstream factors which correlate with hepatic lipid synthesis and oxidation in vivo and in vitro. Nevertheless, Compound C abrogated the benefits derived from β-PAE in L02 cells. In conclusion, these results suggest that β-PAE exerts AMPK agonist-like effect to regulate hepatic lipid synthesis and oxidation, eventually prevent NAFLD progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2020.111104DOI Listing
February 2021

β-patchoulene simultaneously ameliorated dextran sulfate sodium-induced colitis and secondary liver injury in mice via suppressing colonic leakage and flora imbalance.

Biochem Pharmacol 2020 12 2;182:114260. Epub 2020 Oct 2.

Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China. Electronic address:

Ulcerative colitis (UC) often occurs accompanied by colonic leakage and flora imbalance, resulting in secondary liver injury (SLI). SLI, in turn, aggravates UC, so the treatment of UC should not ignore it. β-patchoulene (β-PAE), a tricyclic sesquiterpene isolated from Pogostemon cablin, has been reported to exert a protective effect in gastrointestinal disease in our previous studies. However, its protection against UC and SLI remains unknown. Here we explored the protective effect and underlying mechanism of β-PAE against dextran sulfate sodium-induced UC and SLI in mice. The results indicated that β-PAE significantly reduced disease activity index, splenic index and attenuated the shortening of colonic length in UC mice. It alleviated colonic pathological changes and apoptosis through protecting tight junctions, reducing neutrophil aggregation, and inhibiting the release of pro-inflammatory cytokines and adhesion molecules. These effects of β-PAE were associated with the inhibition of TLR4/MyD88/NF-κB and ROCK1/MLC2 signalling pathway. UC-induced colonic leakage caused abnormally high LPS levels to result in SLI, and β-PAE markedly inhibited it. β-PAE simultaneously ameliorated SLI with reduced biomarker levels of endotoxin exposure and hepatic inflammation. High levels of LPS were also associated with flora imbalance in UC mice. However, β-PAE restored the diversity of gut microbiota and altered the relative abundance of characteristic flora of UC mice. Escherichia-dominated gut microbiota of UC mice was changed to Oscillospira-dominated after β-PAE treatment. In conclusion, pharmacological effects of β-PAE on UC and SLI were mainly contributed by suppressing colonic leakage and flora imbalance. The findings may have implications for UC treatment that not neglect the treatment of SLI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2020.114260DOI Listing
December 2020

Rhamnocitrin extracted from Nervilia fordii inhibited vascular endothelial activation via miR-185/STIM-1/SOCE/NFATc3.

Phytomedicine 2020 Dec 19;79:153350. Epub 2020 Sep 19.

Mathematical Engineering Academy of Chinese Medicine; Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China. Electronic address:

Background: Vascular endothelial activation is pivotal for the pathological development of various infectious and inflammatory diseases. Therapeutic interventions to prevent endothelial activation are of great clinical significance to achieve anti-inflammatory strategy. Previous studies indicate that the total flavonoids from the endemic herbal medicine Nervilia fordii (Hance) Schltr exerts potent anti-inflammatory effect and protective effect against endotoxin lipopolysaccharide (LPS)-induced acute lung injury, and shows clinical benefit in severe acute respiratory syndromes (SARS). However, the exact effective component of Nervilia fordii and its potential mechanism remain unknown.

Purpose: The aim of this study was to investigate the effect and mechanism of rhamnocitrin (RH), a flavonoid extracted from Nervilia fordii, on LPS-induced endothelial activation.

Methods: The in vitro endothelial cell activation model was induced by LPS in human umbilical vein endothelial cells (HUVECs). Cell viability was measured to determine the cytotoxicity of RH. RT-PCR, Western blot, fluorescent probe and immunofluorescence were conducted to evaluate the effect and mechanism of RH against endothelial activation.

Results: RH was extracted and isolated from Nervilia fordii. RH at the concentration from 10 M-10 M inhibited the expressions of interlukin-6 (IL-6) and -8 (IL-8), monocyte chemotactic protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), vascular cell-adhesion molecule-1 (VCAM-1), and plasminogen activator inhibitor-1 (PAI-1) in response to LPS challenge. Mechanistically, RH repressed calcium store-operated Ca entry (SOCE) induced by LPS, which is due to downregulation of stromal interaction molecule-1 (STIM-1) following upregulating microRNA-185 (miR-185). Ultimately, RH abrogated LPS-induced activation of SOCE-mediated calcineurin/NFATc3 (nuclear factor of activated T cells, cytoplasmic 3) signaling pathway.

Conclusion: The present study identifies RH as a potent inhibitor of endothelial activation. Since vascular endothelial activation is a pivotal cause of excessive cytokine production, leading to cytokine storm and severe pathology in infectious diseases such as SARS and the ongoing COVID-19 pneumonia disease, RH might suggest promising therapeutic potential in the management of cytokine storm in these diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2020.153350DOI Listing
December 2020

Ethanol Extract of Seed Inhibit Triple-Negative Breast Cancer by Restraining Autophagy via PI3K/Akt/mTOR Pathway.

Front Pharmacol 2020 29;11:606. Epub 2020 Apr 29.

Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Triple-negative breast cancer (TNBC) is an aggressive disease with worst prognosis than other subtypes of breast cancer. Owing to the lack of hormone receptors and HER2 expression on TNBC cells, patients do not have targeted therapy options available with other breast cancer subtypes. Extensive efforts have been made to identify novel therapeutics against TNBC. Interestingly, recent studies had shown that plant-derived natural products could modulate the autophagy and induce the breast cancer cells death. Seed of has been used as an important traditional Chinese medicine against cancers. In the present study, the anti-breast cancer potential of ethanol crude extracts from seed (BJE) was explored. Data demonstrated that BJE could inhibit the TNBC cell line MDA-MB-231 proliferation and induced apoptosis. In the cells exposed to BJE, protein expressions of UNC-51-like kinase-1 (ULK1) and Beclin-1 and the ratio of light chain 3 II/I (LC3 II/I) were reduced, while the expression of p62 was increased, indicating an inhibition on autophagy. Moreover, BJE promoted the phosphorylation of mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase (PI3K), and Akt in MDA-MB-231. BJE also suppressed the MDA-MB-231 tumor growth . Coincide with the results , autophagy in the tumor tissue was weakened as indicated by decreased ratio of LC 3 II/I and Beclin-1 accompanied by enhanced phosphorylation of mTOR, which confirmed that autophagy restraint via the PI3K/Akt/mTOR signaling pathway contributes to the suppression by BJE. Notably, no noticeable toxicity in non-targeted organs was found, including small intestine, liver, and kidney. Taken together, this study revealed anti-breast cancer activity of BJE based on autophagy restraint, highlighting its clinical importance as a novel natural agent against TNBC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2020.00606DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7201043PMC
April 2020

Patchouli alcohol protects against chronic unpredictable mild stress-induced depressant-like behavior through inhibiting excessive autophagy via activation of mTOR signaling pathway.

Biomed Pharmacother 2020 Jul 31;127:110115. Epub 2020 Mar 31.

Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. Electronic address:

Patchouli alcohol (PA), a tricyclic sesquiterpene, is the major chemical component of patchouli oil. This study investigated the antidepressant-like effect and mechanism of PA in chronic unpredictable mild stress (CUMS). Our results showed that PA markedly attenuated CUMS-induced depressant-like behaviors, including an effective increase of sucrose preference and spontaneous exploratory capacity, as well as reduction of immobility time. In addition, PA markedly attenuated CUMS-induced mTOR, p70S6K, and 4E-BP-1 phosphorylation reduction in the hippocampus. Furthermore, PA reversed CUMS-induced increases in LC3-II and p62 levels and CUMS-induced decrease in PSD-95 and SYN-I levels. These results indicated that the antidepressant-like effect of PA was correlated with the activation of the mTOR signaling pathway. Moreover, behavioral experimental results showed that the antidepressant-like effect of PA was blocked by rapamycin (autophagy inducer and mTOR inhibitor) and chloroquine (autophagic flux inhibitor). These results suggest that PA exerted antidepressant-like effect in CUMS rats through inhibiting autophagy, repairing synapse, and restoring autophagic flux in the hippocampus by activating the mTOR signaling pathway. The results render PA a promising antidepressant agent worthy of further development into a pharmaceutical drug for the treatment of depression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2020.110115DOI Listing
July 2020

Protective Effect of (L.) Lam. Fruit on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice: Role of Keap1/Nrf2 Pathway and Gut Microbiota.

Front Pharmacol 2019 3;10:1602. Epub 2020 Feb 3.

Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.

(BG), a medicinal mangrove, and its fruit (a food material) (BGF), have traditionally been used to treat diarrhea (also known as ulcerative colitis) in folk medicine. However, the mechanism of action against colitis remains ambiguous. This study aimed to investigate the potential efficacy and mechanism of BGF on experimental colitis. Colitis was induced by oral intake of dextran sulfate sodium (DSS) and treated with aqueous extract of BGF (25, 50 and 100 mg/kg) for a week. The Disease Activity Index (DAI), colon length, and histological changes of colon were analyzed. The inflammatory and oxidative stress status was explored. The protein expression of Nrf2 and Keap1 in the colon was detected by Western blotting. The mRNA expression of Nrf2 downstream genes (, , and ) was determined by RT-PCR. Furthermore, the effect on intestinal flora was analyzed. Results indicated that BGF was rich in pinitol, and showed strong antioxidative activity . Compared with the DSS model, BGF effectively reduced the body weight loss and DAI, restored the colon length, repaired colonic pathological variations, and decreased the histological scores, which was superior to salicylazosulfapyridine (SASP) with smaller dosage. Moreover, BGF not only abated the levels of MDA and inflammatory mediators (TNF-α, IL-6, IL-1β, and IFN-γ), increased the level of IL-10, but also prevented the depletion of SOD and GSH. BGF upregulated the protein level of nuclear Nrf2 and mRNA levels of , , and , while significantly inhibited the protein expression of Keap1 and cytosolic Nrf2. Besides, BGF promoted the growth of probiotics (, , and ) in the gut, and inhibited the colonization of pathogenic bacteria ( and ), which contributed to the maintenance of intestinal homeostasis. BGF possessed protective effect against DSS-induced colitis. The potential mechanism of BGF may involve the amelioration of inflammatory and oxidative status, activation of Keap1/Nrf2 signaling pathway, and maintenance of micro-ecological balance of the host. This study provides experimental evidence for the traditional application of BGF in the treatment of diarrhea, and indicates that BGF may be a promising candidate against colitis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2019.01602DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7008401PMC
February 2020

Patchouli alcohol attenuates 5-fluorouracil-induced intestinal mucositis via TLR2/MyD88/NF-kB pathway and regulation of microbiota.

Biomed Pharmacother 2020 Apr 28;124:109883. Epub 2020 Jan 28.

Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. Electronic address:

Intestinal mucositis causes great suffering to cancer patients who undergo chemotherapy and radiotherapy. Owing to the uncertain side effects of anticancer drugs to attenuate patients' intestinal mucositis, many studies focused on traditional Chinese medicine (TCM). Patchouli alcohol (PA) is an active compound extracted from Pogostemon cablin, and has potent gastrointestinal protective effect. However, whether PA has an effect on intestinal mucositis is still unknown. Therefore, we established a rat model of intestinal mucositis via intraperitoneal injection of 5-fluorouracil, and intragastrically administrated PA (10, 20, and 40 mg/kg) to evaluate the effect of PA on intestinal mucositis. The routine observation (body weight, food intake, and diarrhea) in rats was used to detect whether PA had an effect on intestinal mucositis. Levels of inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-10, and MPO), mucosal barrier proteins (zonula occludens -1 (ZO-1), claudin-1, occludin, myosin light chain (MLC), and mucin-2) and intestinal microbiota were determined to elucidate the underlying mechanism of PA action on intestinal mucositis in rats. The results showed that PA could effectively improve body weight, food intake, and diarrhea in intestinal mucositis rats, preliminary confirming PA efficacy. Further experiments revealed that PA not only decreased the levels of TNF-α, IL-1β, IL-6, and MPO but also increased the level of IL-10 significantly. In addition, the expression of mucosal barrier proteins and microbiota community were also improved after PA treatment in diseased rats. Hence, PA may prevent the development and progression of intestinal mucositis by improving inflammation, protecting mucosal barrier, and regulating intestinal microbiota.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2020.109883DOI Listing
April 2020

Patchouli oil ameliorates 5-fluorouracil-induced intestinal mucositis in rats via protecting intestinal barrier and regulating water transport.

J Ethnopharmacol 2020 Mar 25;250:112519. Epub 2019 Dec 25.

Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Dongguan, 523808, China. Electronic address:

Ethnopharmacological Relevance: Pogostemon cablin, commonly named "Guang-Huo-Xiang" in China, has long been renowned for its ability to dispel dampness and regulate gastrointestinal functions. Patchouli oil (P.oil), the major active fraction of Pogostemon cablin, has been traditionally used as the principal component of Chinese medicinal formulae to treat exterior syndrome and diarrhea. However, the effects of P.oil in treating 5-fluorouracil (5-FU)-induced intestinal mucositis have not yet been reported.

Aim Of The Study: To investigate the protective effects of P.oil against 5-FU-induced intestinal mucositis and the mechanisms underlying these effects.

Materials And Methods: Sprague-Dawley rats were intraperitoneally injected with 5-FU (30 mg/kg) to establish an intestinal mucositis model. Meanwhile, rats with intestinal mucositis were orally administered with P.oil (25, 50, and 100 mg/kg). Histological analysis, ELISA (for detecting inflammatory cytokines and aquaporins), immunohistochemistry analysis (for examining caspases), qRT-PCR analysis (for assessment tight junctions), and western blotting analysis (for the assessment of TLR2/TLR4-MyD88 and VIP-cAMP-PKA signaling pathway-related proteins) were performed to estimate the protective effects of P.oil against intestinal mucositis and the mechanisms underlying these effects.

Results: The histopathological assessment preliminarily exhibited that P.oil alleviated the 5-FU-induced damage to the intestinal structure. After P.oil administration, the elevation of the expression of cytokines (TNF-α, IFN-γ, and IL-13) decreased markedly and the activation of NF-κB and MAPK signaling was significantly inhibited. P.oil also increased the mRNA expression of ZO-1 and Occludin, thereby stabilizing intestinal barrier. In addition, P.oil decreased the expressions of caspase-8, caspase-3, and Bax, and increased the expression of Bcl-2, thereby reducing the apoptosis of the intestinal mucosa. These results were closely related to the regulation of the TLR2/TLR4-MyD88 signaling pathway. It has been indicated that P.oil possibly protected the intestinal barrier by reducing inflammation and apoptosis. Furthermore, this study showed that P.oil inhibited the abnormal expression of AQP3, AQP7, and AQP11 by regulating the VIP-cAMP-PKA signaling pathway. Furthermore, it restored the intestinal water absorption, thereby alleviating diarrhea.

Conclusions: P.oil ameliorated 5-FU-induced intestinal mucositis in rats via protecting intestinal barrier and regulating water transport.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2019.112519DOI Listing
March 2020

Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect: Impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-κB pathway.

Pharmacol Res 2020 02 19;152:104603. Epub 2019 Dec 19.

Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China. Electronic address:

Berberine (BBR), a naturally-occurring isoquinoline alkaloid isolated from several Chinese herbal medicines, has been widely used for the treatment of dysentery and colitis. However, its blood concentration was less than 1 %, and intestinal microflora-mediated metabolites of BBR were considered to be the important material basis for the bioactivities of BBR. Here, we investigated the anti-colitis activity and potential mechanism of oxyberberine (OBB), a novel gut microbiota metabolite of BBR, in DSS-induced colitis mice. Balb/C mice treated with 3 % DSS in drinking water to induce acute colitis were orally administrated with OBB once daily for 8 days. Clinical symptoms were analyzed, and biological samples were collected for microscopic, immune-inflammation, intestinal barrier function, and gut microbiota analysis. Results showed that OBB significantly attenuated DSS-induced clinical manifestations, colon shortening and histological injury in the mice with colitis, which achieved similar therapeutic effect to azathioprine (AZA) and was superior to BBR. Furthermore, OBB remarkably ameliorated colonic inflammatory response and intestinal epithelial barrier dysfunction. OBB appreciably inhibited TLR4-MyD88-NF-κB signaling pathway through down-regulating the protein expressions of TLR4 and MyD88, inhibiting the phosphorylation of IκBα, and the translocation of NF-κB p65 from cytoplasm to nucleus. Moreover, OBB markedly modulated the gut dysbiosis induced by DSS and restored the dysbacteria to normal level. Taken together, the result for the first time revealed that OBB effectively improved DSS-induced experimental colitis, at least partly through maintaining the colonic integrity, inhibiting inflammation response, and modulating gut microflora profile.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2019.104603DOI Listing
February 2020

Patchouli Essential Oil and Its Derived Compounds Revealed Prebiotic-Like Effects in C57BL/6J Mice.

Front Pharmacol 2019 17;10:1229. Epub 2019 Oct 17.

State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.

(Blanco) Benth (PC) is a Chinese medicinal plant traditionally used for the treatment of gastrointestinal symptoms. To investigate the prebiotic effect of patchouli essential oil (PEO) and its derived compounds through the modulation of gut microbiota (GM). C57BL/6J mice were treated with the PEO and three active components of PEO, patchouli alcohol (PA), pogostone (PO) and β-patchoulene (β-PAE) for 15 consecutive days. Fecal samples and mucosa were collected for GM biomarkers studies. PEO, PA, PO, and β-PAE improve the gut epithelial barrier by altering the status of E-cadherin vs. N-cadherin expressions, and increasing the mucosal p-lysozyme and Muc 2. Moreover, the treatments also facilitate the polarization of M1 to M2 macrophage phenotypes, meanwhile, suppress the pro-inflammatory cytokines. Fecal microbial DNAs were analyzed and evaluated for GM composition by ERIC-PCR and 16S rRNA amplicon sequencing. The GM diversity was increased with the treated groups compared to the control. Further analysis showed that some known short chain fatty acids (SCFAs)-producing bacteria, , , , , and were significantly enriched in the treated groups. In addition, the key SCFAs receptors, GPR 41, 43 and 109a, were significantly stimulated in the gut epithelial layer of the treated mice. By contract, the relative abundance of pathogens spp., , and spp. were distinctly reduced by the treatments with PEO and β-PAE. Our findings provide insightful information that the microbiota/host dynamic interaction may play a key role for the pharmacological activities of PEO, PA, PO, and β-PAE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2019.01229DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6812344PMC
October 2019

Protective Effect of Patchouli Alcohol Against High-Fat Diet Induced Hepatic Steatosis by Alleviating Endoplasmic Reticulum Stress and Regulating VLDL Metabolism in Rats.

Front Pharmacol 2019 1;10:1134. Epub 2019 Oct 1.

Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.

Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic hepatic disorder worldwide. The earliest stage of NAFLD is simple steatosis, which is characterized by the accumulation of triglycerides in hepatocytes. Inhibition of steatosis is a potential treatment for NAFLD. Patchouli alcohol (PA) is an active component of (Blanco) Benth. (Labiatae), which is a medicinal food in Asia countries and proved to possess hepatoprotective effect. This research aimed to investigate the effectiveness of PA against high fat diet (HFD)-induced hepatic steatosis in rats. In this study, male Sprague Dawley rats were fed a HFD for 4 weeks to induce NAFLD. Oral administration with PA significantly reduced pathological severity of steatosis in HFD-fed rats. It was associated with suppressing endoplasmic reticulum (ER) stress and regulating very low-density lipoprotein (VLDL) metabolism. Our data showed that PA treatment effectively attenuated ER stress by inhibiting the activation of protein kinase-like ER kinase (PERK), inositol-requiring transmembrane kinase/endoribonuclease 1 (IRE1), and activating transcription factor 6 (ATF6). Moreover, PA decreased hepatic VLDL uptake by suppressing very low-density lipoprotein receptor (VLDLR) expression. It also restored VLDL synthesis and export by increasing apolipoprotein B100 (apoB 100) secretion and microsomal triglyceride-transfer protein (MTP) activity. Taken together, PA exerted a protective effect on the treatment of NAFLD in HFD-fed rats and may be potential therapeutic agent acting on hepatic steatosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2019.01134DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779828PMC
October 2019

Dihydroberberine, a hydrogenated derivative of berberine firstly identified in Phellodendri Chinese Cortex, exerts anti-inflammatory effect via dual modulation of NF-κB and MAPK signaling pathways.

Int Immunopharmacol 2019 Oct 8;75:105802. Epub 2019 Aug 8.

Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan 523808, PR China. Electronic address:

Dihydroberberine (DHB), a hydrogenated derivative of berberine (BBR), has been firstly identified in Phellodendri Chinese Cortex (PC) by HPLC-ESI-MS/MS. Nowadays most researches on PC focus on its main components like BBR, however, the role of its naturally-occurring derivatives remains poorly defined heretofore. The present work aimed to comparatively evaluate the in vivo anti-inflammatory properties and mechanisms of DHB and BBR in three typical inflammatory murine models. The results showed that DHB effectively mitigated acetic acid-induced vascular permeability, xylene-elicited ear edema and carrageenan-caused paw edema. Meanwhile, DHB markedly attenuated the inflammatory cell infiltration in pathological sections of ears and paws. DHB was also observed to significantly decrease the production and mRNA expression levels of IL-6, IL-1β, TNF-α, NO (iNOS) and PGE2 (COX-2), increase the release of IL-10, and inhibit the activation of NF-κB and MAPK signaling pathways. The anti-inflammatory effect of DHB was weaker than that of BBR. The results might further contribute to unraveling the pharmacodynamic basis of PC and support its ethnomedical use in the treatment of inflammatory diseases. DHB possesses good potential to be further developed into a promising anti-inflammatory alternative, and can serve as a lead template for novel anti-inflammatory candidate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2019.105802DOI Listing
October 2019

The Protective Effect of Fruit Extract on Acetaminophen-Induced Liver Injury in Mice.

Evid Based Complement Alternat Med 2019 19;2019:6919834. Epub 2019 Jun 19.

Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.

Acute liver injury is a common consequence of taking overdose of acetaminophen (APAP). The aim of this study was to evaluate the antioxidant activity and hepatoprotective effect of a mangrove plant fruit extract (SAFE) on APAP-induced liver injury in mice. Mice were orally pretreated with SAFE (100, 200, and 400 mg/kg) daily for one week. The control and APAP groups were intragastrically administered with distilled water, and NAC group was treated with N-Acetyl-L-cysteine (NAC) before APAP exposure. The results manifested that SAFE significantly improved survival rates, attenuated hepatic histological damage, and decreased the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in serum in APAP-exposed mice. SAFE treatment also increased glutathione (GSH) level and glutathione peroxidase (GSH-Px) activity, enhanced catalase (CAT), and total antioxidant capacity (T-AOC), as well as reducing malondialdehyde (MDA) level in liver. In addition, the formation of tumor necrosis factor-alpha (TNF-), interleukin 6 (IL-6), and elevation of myeloperoxidase (MPO) in APAP-exposed mice were inhibited after SAFE treatment. And SAFE also displayed high DPPH radical scavenging activity and reducing power . The main bioactive components of SAFE such as total phenol, flavonoid, condensed tannin, and carbohydrate were determined. The current study proved that SAFE exerted potential protective effect against APAP-induced acute liver injury, which might be associated with the antioxidant and anti-inflammatory activities of SAFE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2019/6919834DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6607706PMC
June 2019

Suppressive effects of the supercritical-carbon dioxide fluid extract of Chrysanthemum indicum on chronic unpredictable mild stress-induced depressive-like behavior in mice.

Food Funct 2019 Feb;10(2):1212-1224

The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.

The aim of the present study was to explore whether the supercritical-carbon dioxide fluid extract from flowers and buds of Chrysanthemum indicum (SEC) exhibits antidepressant-like effects in a chronic unpredictable mild stress (CUMS)-induced mice model. Firstly, SEC was found to reverse a CUMS-induced decrease in the body weight gain in mice. Next, SEC was found to alleviate CUMS-induced depressive-like behavior, evidenced by the reversal of the decrease in the sucrose consumption in the sucrose preference test (SPT), the increase in the locomotor activity in the open field test (OPF), and the alleviation of immobility duration in both the forced swimming test (FST), and tail-suspension test (TST). SEC also attenuated CUMS-induced hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis by decreasing the levels of serum corticosterone and (CORT) and adrenocorticotropic hormone (ACTH), and hypothalamus corticotrophin-releasing hormone (CRH). In addition, SEC was found to suppress the expression of pro-inflammatory cytokines, including the tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in the hippocampal of CUMS mice. Interestingly, further investigations demonstrated that SEC inhibited CUMS-induced activation of the nuclear factor kappa B (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasomes pathways but upregulated brain-derived neurotrophic factor (BDNF) expression and promoted phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP-response element-binding protein (CREB) in hippocampal. In summary, SEC was able to alleviate depressive-like behavior in a CUMS-induced mice model, accompanied by inhibitory roles in the hyperactivity of the HPA axis and pro-inflammatory cytokine expression. Modulating the NF-κB/NLRP3 and BDNF/CREB/ERK pathways contributed to SEC-mediated antidepressant-like effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8fo02474jDOI Listing
February 2019

Antioxidative and Anti-Inflammatory Effects of Water Extract of Linn. against Ethanol-Induced Gastric Ulcer in Rats.

Evid Based Complement Alternat Med 2018 12;2018:3585394. Epub 2018 Dec 12.

Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.

Linn., a medicinal pteridophyte growing in mangrove forests and coastal regions of tropical and subtropical areas worldwide, has been proved to possess various biological effects. However, the protective effect of Linn. against gastric ulcer still remains unidentified. Therefore, the gastroprotective effect of the water extract of Linn. (WEAC) was investigated in ethanol-induced gastric injury model. According to our results, pretreatment with WEAC (100, 200, and 400 mg/kg) could dramatically decrease the ulcer areas and ameliorate the pathological damage induced by alcohol in rat's gastric tissues. In addition, WEAC administration prevented the stomach from oxidative damage via markedly increasing the levels of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and decreasing the malondialdehyde (MDA). Besides, WEAC pretreatment alleviated inflammatory infiltration by reducing the secretion of proinflammatory cytokines including tumor necrosis factor- (TNF-), interleukin-1 (IL-1), and interleukin-6 (IL-6) as well as decreasing the protein expressions of phosphorylation of IB and p65. Taken together, WEAC exerted potential therapeutic efficacy for gastric ulceration, and this may be involved in the suppression of oxidative stress and inflammatory response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2018/3585394DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311278PMC
December 2018

Metabolite Identification and Pharmacokinetic Profiling of Isoflavones from Black Soybean in Rats Using Ultrahigh-Performance Liquid Chromatography with Linear-Ion-Trap-Orbitrap and Triple-Quadrupole Tandem Mass Spectrometry.

J Agric Food Chem 2018 Dec 29;66(49):12941-12952. Epub 2018 Nov 29.

The Second Clinical College of Guangzhou University of Chinese Medicine , Guangzhou 51000 , China.

Black soybeans are rich in isoflavones, which have several beneficial health effects. In this study, a validated method based on UHPLC-MS/MS was developed to screen black-soybean metabolites in rat urine, bile, and plasma and to quantify the compounds (daidzein, genistein, glycitein, and daidzin) and their metabolites (daidzein-4'-β-d-glucuronide, genistein-7-β-d-glucuronide, and genistein-4'-β-d-glucuronide) in plasma. Thirty-seven compounds were tentatively detected in the biological samples. The method was fully validated in quantitative experiments, including in assessments of linearity (2.5-100 ng/mL for daidzein, genistein, and glycitein; 10-100 ng/mL for daidzin; 5-3125 ng/mL for genistein-7-β-d-glucuronide; and 5-1562.5 ng/mL for daidzein-4'-β-d-glucuronide and genistein-4'-β-d-glucuronide), matrix effects (85-115%), recovery (80-105%), precision (<10%), and accuracy (<10%). The compounds were stable throughout sample storage, treatment, and analysis. The method was first applied to detect IFs and metabolites in rats after oral administration of black-soybean extract. These results support the potential of this method for successful application in pharmacokinetic studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.8b04852DOI Listing
December 2018

Brusatol ameliorates 2, 4, 6-trinitrobenzenesulfonic acid-induced experimental colitis in rats: Involvement of NF-κB pathway and NLRP3 inflammasome.

Int Immunopharmacol 2018 Nov 13;64:264-274. Epub 2018 Sep 13.

Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China. Electronic address:

Brusatol is a main bioactive component derived from the Chinese medicinal plant Brucea javanica, which is traditionally used for the treatment of dysentery (also known as ulcerative colitis, UC). Previously, we have designed a novel brusatol self-microemulsifying drug delivery system (BR-SMEDDS) to increase its solubility and bioavailability, and enhance its bioactivities. In the present study, we established 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rat model in vivo and lipopolysaccharide (LPS)-induced RAW 264.7 macrophages in vitro, to investigate the potential anti-inflammatory effect and underlying mechanism of BR-SMEDDS. Disease activity index (DAI) including body weight, stool consistency and gross bleeding was measured. Macroscopic and histological evaluations of colons were conducted. Relevant molecular events were determined by ELISA, qRT-PCR, immunohistochemistry or Western blotting. The results showed that BR notably inhibited the productions of TNF-α, pro-IL-1β, PGE and NO, and suppressed the NF-κB signaling pathway in LPS-stimulated macrophages. In parallel with the vitro experimental results, BR significantly attenuated diarrhea, colonic shortening, macroscopic damage and histological injury. BR treatment also increased the levels of TGF-β and IL-4, decreased the contents of IL-1β and IL-18, and elevated the levels of CAT, GSH and SOD in the colons. Furthermore, BR also markedly activated the Nrf2 expression and suppressed the NLRP3 inflammasome activation. Taken together, the anti-UC effect of BR might be intimately associated with the suppression of NF-κB and NLRP3-mediated inflammatory responses, and regulation of Nrf2-mediated oxidative stress. BR might have the potential to be further developed into a promising therapeutic agent for colitis treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2018.09.008DOI Listing
November 2018

Coptisine-induced inhibition of Helicobacter pylori: elucidation of specific mechanisms by probing urease active site and its maturation process.

J Enzyme Inhib Med Chem 2018 Dec;33(1):1362-1375

f Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome , The Second Affiliated Hospital, Guangzhou University of Chinese Medicine , Guangzhou , P. R. China.

In this study, we examined the anti-Helicobactor pylori effects of the main protoberberine-type alkaloids in Rhizoma Coptidis. Coptisine exerted varying antibacterial and bactericidal effects against three standard H. pylori strains and eleven clinical isolates, including four drug-resistant strains, with minimum inhibitory concentrations ranging from 25 to 50 μg/mL and minimal bactericidal concentrations ranging from 37.5 to 125 μg/mL. Coptisine's anti-H. pylori effects derived from specific inhibition of urease in vivo. In vitro, coptisine inactivated urease in a concentration-dependent manner through slow-binding inhibition and involved binding to the urease active site sulfhydryl group. Coptisine inhibition of H. pylori urease (HPU) was mixed type, while inhibition of jack bean urease was non-competitive. Importantly, coptisine also inhibited HPU by binding to its nickel metallocentre. Besides, coptisine interfered with urease maturation by inhibiting activity of prototypical urease accessory protein UreG and formation of UreG dimers and by promoting dissociation of nickel from UreG dimers. These findings demonstrate that coptisine inhibits urease activity by targeting its active site and inhibiting its maturation, thereby effectively inhibiting H. pylori. Coptisine may thus be an effective anti-H. pylori agent.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/14756366.2018.1501044DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136390PMC
December 2018

Hepatoprotective Effect of Polysaccharides Isolated from against Acetaminophen-Induced Liver Injury in Mice via Regulation of the Nrf2-Keap1 Signaling Pathway.

Oxid Med Cell Longev 2018 18;2018:6962439. Epub 2018 Jul 18.

Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.

The effect of polysaccharides isolated from (DOP) on acetaminophen- (APAP-) induced hepatotoxicity and the underlying mechanisms involved are investigated. Male Institute of Cancer Research (ICR) mice were randomly assigned to six groups: (1) control, (2) vehicle (APAP, 230 mg/kg), (3) -acetylcysteine (100 mg/kg), (4) 50 mg/kg DOP, (5) 100 mg/kg DOP, and (6) 200 mg/kg DOP. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in the serum and glutathione (GSH), malondialdehyde (MDA), catalase (CAT), total antioxidant capacity (T-AOC), myeloperoxidase (MPO), and reactive oxygen species (ROS) levels in the liver were determined after the death of the mice. The histological examination of the liver was also performed. The effect of DOP on the Kelch-like ECH-associated protein 1- (Keap1-) nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway was evaluated using Western blot analysis and real-time polymerase chain reaction (PCR). The results showed that DOP treatment significantly alleviated the hepatic injury. The decrease in ALT and AST levels in the serum and ROS, MDA, and MPO contents in the liver, as well as the increases in GSH, CAT, and T-AOC in the liver, were observed after DOP treatment. DOP treatment significantly induced the dissociation of Nrf2 from the Nrf2-Keap1 complex and promoted the Nrf2 nuclear translocation. Subsequently, DOP-mediated Nrf2 activation triggered the transcription and expressions of the glutamate-cysteine ligase catalytic (GCLC) subunit, glutamate-cysteine ligase regulatory subunit (GCLM), heme oxygenase-1 (HO-1), and NAD(P)H dehydrogenase quinone 1 (NQO1) in APAP-treated mice. The present study revealed that DOP treatment exerted potentially hepatoprotective effects against APAP-induced liver injury. Further investigation about mechanisms indicated that DOP exerted the hepatoprotective effect by suppressing the oxidative stress and activating the Nrf2-Keap1 signaling pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2018/6962439DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6079321PMC
December 2018

Pinostrobin Exerts Neuroprotective Actions in Neurotoxin-Induced Parkinson's Disease Models through Nrf2 Induction.

J Agric Food Chem 2018 Aug 26;66(31):8307-8318. Epub 2018 Jul 26.

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences , University of Macau , Macau 999078 , China.

The aim of the present study was to assess the neuroprotective effects of pinostrobin (PSB), a dietary bioflavonoid, and its underlying mechanisms in neurotoxin-induced Parkinson's disease (PD) models. First, PSB could attenuate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons and improve behavior deficiency in zebrafish, supporting its potential neuroprotective actions in vivo. Next, PSB could decreased apoptosis and death in the 1-methyl-4-phenylpyridinium (MPP)-intoxicated SH-SY5Y cells, evidenced by MTT, LDH, Annexin V-FITC/PI, and DNA fragmentation assay. PSB also blocked MPP-induced apoptotic cascades, including loss of mitochondrial membrane potential, activation of caspase 3, and reduced ratio of Bcl-2/Bax. In addition, PSB suppressed MPP-induced oxidative stress but increased antioxidant enzymes, evidenced by decrease of reactive oxygen species generation and lipid peroxidation and up-regulation of GSH-Px, SOD, CAT, GSH/GSSG, and NAD/NADH. Further investigations showed that PSB significantly enhanced Nrf2 expression and nuclear accumulation, improved ARE promoter activity and up-regulated expression of HO-1 and GCLC. Furthermore, Nrf2 knockdown via specific Nrf2 siRNA abolished PSB-induced antioxidative and antiapoptotic effects against MPP insults. Interestingly, we then found that PSB promoted phosphorylation of PI3K/AKT and ERK, and pharmacological inhibition of PI3K/AKT or ERK signaling diminished PSB-induced Nrf2/ARE activation and protective actions. In summary, PSB confers neuroprotection against MPTP/MPP-induced neurotoxicity in PD models. Promoting activation of Nrf2/ARE signaling contributes to PSB-mediated antioxidative and neuroprotective actions, which, in part, is mediated by PI3K/AKT and ERK.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.8b02607DOI Listing
August 2018

Octahydrocurcumin, a final hydrogenated metabolite of curcumin, possesses superior anti-tumor activity through induction of cellular apoptosis.

Food Funct 2018 Apr;9(4):2005-2014

Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.

The biological activity of curcumin (CUR), a promising naturally occurring dietary compound for the treatment of hepatocellular carcinoma (HCC), was closely associated with its metabolite. Octahydrocurcumin (OHC) is the final hydrogenated metabolite of CUR and has been reported to have potential biological activities. However, difficulties in access have hampered its biological studies. In the current investigation, we designed an efficient synthesis method to produce OHC, and comparatively explored the anti-cancer effect and potential mechanism of OHC and CUR in an H22 ascites tumor-bearing mice model. The results indicated that OHC had a relatively wide margin of safety, and exhibited superior effects to CUR in suppressing the tumor growth, including ascending weight, abdominal circumference, ascites volume and cancer cell viability. OHC significantly induced H22 cell apoptosis by upregulating the p53 expression and downregulating the MDM2 expression. OHC also remarkably decreased the Bcl-2 and Bcl-xl protein expressions, and increased the Bax and Bad expressions in ascitic cells. Furthermore, THC substantially induced the release of cytochrome C, caspase-3, caspase-9 and the cleavage of PARP to induce H22 cell apoptosis. Taken together, OHC was more effective than CUR in suppressing H22-induced HCC through the activation of the mitochondrial apoptosis pathway. OHC may thus be a promising anti-HCC agent.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7fo02048aDOI Listing
April 2018