Publications by authors named "Zhiqiang Ku"

38 Publications

The N501Y spike substitution enhances SARS-CoV-2 infection and transmission.

Nature 2021 Nov 24. Epub 2021 Nov 24.

Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.

Beginning in the summer of 2020, a variant of SARS-CoV-2, the cause of the COVID-19 pandemic, emerged in the United Kingdom. This B.1.1.7 variant, also known as Alpha, increased rapidly in prevalence, attributed to an increase in infection and/or transmission efficiency. The Alpha variant has 19 nonsynonymous mutations across its viral genome, including 8 substitutions or deletions in the spike protein, which interacts with cellular receptors to mediate infection and tropism. Here, using a reverse genetics approach, we show that, of the 8 individual spike protein substitutions, only N501Y exhibited consistent fitness gains for replication in the upper airway in the hamster model as well as primary human airway epithelial cells. The N501Y substitution recapitulated the phenotype of enhanced viral transmission seen with the combined 8 Alpha spike mutations, suggesting it is a major determinant of increased transmission of this variant. Mechanistically, the N501Y substitution improved the affinity of the viral spike protein for cellular receptors. As suggested by its convergent evolution in Brazil, South Africa, and elsewhere, our results indicate that N501Y substitution is a major adaptive spike mutation of major concern.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-04245-0DOI Listing
November 2021

Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant.

bioRxiv 2021 Sep 5. Epub 2021 Sep 5.

SARS-CoV-2 Delta variant has rapidly replaced the Alpha variant around the world. The mechanism that drives this global replacement has not been defined. Here we report that Delta spike mutation P681R plays a key role in the Alpha-to-Delta variant replacement. In a replication competition assay, Delta SARS-CoV-2 efficiently outcompeted the Alpha variant in human lung epithelial cells and primary human airway tissues. Delta SARS-CoV-2 bearing the Alpha-spike glycoprotein replicated less efficiently than the wild-type Delta variant, suggesting the importance of Delta spike in enhancing viral replication. The Delta spike has accumulated mutation P681R located at a furin cleavage site that separates the spike 1 (S1) and S2 subunits. Reverting the P681R mutation to wild-type P681 significantly reduced the replication of Delta variant, to a level lower than the Alpha variant. Mechanistically, the Delta P681R mutation enhanced the cleavage of the full-length spike to S1 and S2, leading to increased infection via cell surface entry. In contrast, the Alpha spike also has a mutation at the same amino acid (P681H), but the spike cleavage from purified Alpha virions was reduced compared to the Delta spike. Collectively, our results indicate P681R as a key mutation in enhancing Delta variant replication via increased S1/S2 cleavage. Spike mutations that potentially affect furin cleavage efficiency must be closely monitored for future variant surveillance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.08.12.456173DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404900PMC
September 2021

Oncostatin M Receptor-Targeted Antibodies Suppress STAT3 Signaling and Inhibit Ovarian Cancer Growth.

Cancer Res 2021 Oct 11;81(20):5336-5352. Epub 2021 Aug 11.

Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin.

Although patients with advanced ovarian cancer may respond initially to treatment, disease relapse is common, and nearly 50% of patients do not survive beyond five years, indicating an urgent need for improved therapies. To identify new therapeutic targets, we performed single-cell and nuclear RNA-seq data set analyses on 17 human ovarian cancer specimens, revealing the oncostatin M receptor (OSMR) as highly expressed in ovarian cancer cells. Conversely, oncostatin M (OSM), the ligand of OSMR, was highly expressed by tumor-associated macrophages and promoted proliferation and metastasis in cancer cells. Ovarian cancer cell lines and additional patient samples also exhibited elevated levels of OSMR when compared with other cell types in the tumor microenvironment or to normal ovarian tissue samples. OSMR was found to be important for ovarian cancer cell proliferation and migration. Binding of OSM to OSMR caused OSMR-IL6ST dimerization, which is required to produce oncogenic signaling cues for prolonged STAT3 activation. Human monoclonal antibody clones B14 and B21 directed to the extracellular domain of OSMR abrogated OSM-induced OSMR-IL6ST heterodimerization, promoted the internalization and degradation of OSMR, and effectively blocked OSMR-mediated signaling . Importantly, these antibody clones inhibited the growth of ovarian cancer cells and by suppressing oncogenic signaling through OSMR and STAT3 activation. Collectively, this study provides a proof of principle that anti-OSMR antibody can mediate disruption of OSM-induced OSMR-IL6ST dimerization and oncogenic signaling, thus documenting the preclinical therapeutic efficacy of human OSMR antagonist antibodies for immunotherapy in ovarian cancer. SIGNIFICANCE: This study uncovers a role for OSMR in promoting ovarian cancer cell proliferation and metastasis by activating STAT3 signaling and demonstrates the preclinical efficacy of antibody-based OSMR targeting for ovarian cancer treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-21-0483DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8530981PMC
October 2021

Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants.

Nature 2021 07 3;595(7869):718-723. Epub 2021 Jun 3.

Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Resistance represents a major challenge for antibody-based therapy for COVID-19. Here we engineered an immunoglobulin M (IgM) neutralizing antibody (IgM-14) to overcome the resistance encountered by immunoglobulin G (IgG)-based therapeutics. IgM-14 is over 230-fold more potent than its parental IgG-14 in neutralizing SARS-CoV-2. IgM-14 potently neutralizes the resistant virus raised by its corresponding IgG-14, three variants of concern-B.1.1.7 (Alpha, which first emerged in the UK), P.1 (Gamma, which first emerged in Brazil) and B.1.351 (Beta, which first emerged in South Africa)-and 21 other receptor-binding domain mutants, many of which are resistant to the IgG antibodies that have been authorized for emergency use. Although engineering IgG into IgM enhances antibody potency in general, selection of an optimal epitope is critical for identifying the most effective IgM that can overcome resistance. In mice, a single intranasal dose of IgM-14 at 0.044 mg per kg body weight confers prophylactic efficacy and a single dose at 0.4 mg per kg confers therapeutic efficacy against SARS-CoV-2. IgM-14, but not IgG-14, also confers potent therapeutic protection against the P.1 and B.1.351 variants. IgM-14 exhibits desirable pharmacokinetics and safety profiles when administered intranasally in rodents. Our results show that intranasal administration of an engineered IgM can improve efficacy, reduce resistance and simplify the prophylactic and therapeutic treatment of COVID-19.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03673-2DOI Listing
July 2021

Asprosin-neutralizing antibodies as a treatment for metabolic syndrome.

Elife 2021 04 27;10. Epub 2021 Apr 27.

Harrington Discovery Institute, University Hospitals, Cleveland, United States.

Background: Recently, we discovered a new glucogenic and centrally acting orexigenic hormone - asprosin. Asprosin is elevated in metabolic syndrome (MS) patients, and its genetic loss results in reduced appetite, leanness, and blood glucose burden, leading to protection from MS.

Methods: We generated three independent monoclonal antibodies (mAbs) that recognize unique asprosin epitopes and investigated their preclinical efficacy and tolerability in the treatment of MS.

Results: Anti-asprosin mAbs from three distinct species lowered appetite and body weight, and reduced blood glucose in a dose-dependent and epitope-agnostic fashion in three independent MS mouse models, with an IC50 of ~1.5 mg/kg. The mAbs displayed a half-life of over 3days in vivo, with equilibrium dissociation-constants in picomolar to low nanomolar range.

Conclusions: We demonstrate that anti-asprosin mAbs are dual-effect pharmacologic therapy that targets two key pillars of MS - over-nutrition and hyperglycemia. This evidence paves the way for further development towards an investigational new drug application and subsequent human trials for treatment of MS, a defining physical ailment of our time.

Funding: DK118290 and DK125403 (R01; National Institute of Diabetes and Digestive and Kidney Diseases), DK102529 (K08; National Institute of Diabetes and Digestive and Kidney Diseases), Caroline Wiess Law Scholarship (Baylor College of Medicine, Harrington Investigatorship Harrington Discovery Institute at University Hospitals, Cleveland); Chao Physician Scientist Award (Baylor College of Medicine); RP150551 and RP190561 (Cancer Prevention and Research Institute of Texas [CPRIT]).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.63784DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102062PMC
April 2021

The N501Y spike substitution enhances SARS-CoV-2 transmission.

bioRxiv 2021 Mar 9. Epub 2021 Mar 9.

Beginning in the summer of 2020, a variant of SARS-CoV-2, the cause of the COVID-19 pandemic, emerged in the United Kingdom (UK). This B.1.1.7 variant increased rapidly in prevalence among sequenced strains, attributed to an increase in infection and/or transmission efficiency. The UK variant has 19 nonsynonymous mutations across its viral genome including 8 substitutions or deletions in the spike protein, which interacts with cellular receptors to mediate infection and tropism. Here, using a reverse genetics approach, we show that, of the 8 individual spike protein substitutions, only N501Y exhibited consistent fitness gains for replication in the upper airway in the hamster model as well as primary human airway epithelial cells. The N501Y substitution recapitulated the phenotype of enhanced viral transmission seen with the combined 8 UK spike mutations, suggesting it is a major determinant responsible for increased transmission of this variant. Mechanistically, the N501Y substitution improved the affinity of the viral spike protein for cellular receptors. As suggested by its convergent evolution in Brazil and South Africa, our results indicate that N501Y substitution is a major adaptive spike mutation of major concern.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.03.08.434499DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986995PMC
March 2021

Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis.

Nature 2021 03 25;591(7849):293-299. Epub 2021 Jan 25.

Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-a new coronavirus that has led to a worldwide pandemic-has a furin cleavage site (PRRAR) in its spike protein that is absent in other group-2B coronaviruses. To explore whether the furin cleavage site contributes to infection and pathogenesis in this virus, we generated a mutant SARS-CoV-2 that lacks the furin cleavage site (ΔPRRA). Here we report that replicates of ΔPRRA SARS-CoV-2 had faster kinetics, improved fitness in Vero E6 cells and reduced spike protein processing, as compared to parental SARS-CoV-2. However, the ΔPRRA mutant had reduced replication in a human respiratory cell line and was attenuated in both hamster and K18-hACE2 transgenic mouse models of SARS-CoV-2 pathogenesis. Despite reduced disease, the ΔPRRA mutant conferred protection against rechallenge with the parental SARS-CoV-2. Importantly, the neutralization values of sera from patients with coronavirus disease 2019 (COVID-19) and monoclonal antibodies against the receptor-binding domain of SARS-CoV-2 were lower against the ΔPRRA mutant than against parental SARS-CoV-2, probably owing to an increased ratio of particles to plaque-forming units in infections with the former. Together, our results demonstrate a critical role for the furin cleavage site in infection with SARS-CoV-2 and highlight the importance of this site for evaluating the neutralization activities of antibodies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03237-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175039PMC
March 2021

Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape.

Nat Commun 2021 01 20;12(1):469. Epub 2021 Jan 20.

Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.

Antibody cocktails represent a promising approach to prevent SARS-CoV-2 escape. The determinants for selecting antibody combinations and the mechanism that antibody cocktails prevent viral escape remain unclear. We compared the critical residues in the receptor-binding domain (RBD) used by multiple neutralizing antibodies and cocktails and identified a combination of two antibodies CoV2-06 and CoV2-14 for preventing viral escape. The two antibodies simultaneously bind to non-overlapping epitopes and independently compete for receptor binding. SARS-CoV-2 rapidly escapes from individual antibodies by generating resistant mutations in vitro, but it doesn't escape from the cocktail due to stronger mutational constraints on RBD-ACE2 interaction and RBD protein folding requirements. We also identified a conserved neutralizing epitope shared between SARS-CoV-2 and SARS-CoV for antibody CoV2-12. Treatments with CoV2-06 and CoV2-14 individually and in combination confer protection in mice. These findings provide insights for rational selection and mechanistic understanding of antibody cocktails as candidates for treating COVID-19.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-20789-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817669PMC
January 2021

Potent Bispecific Neutralizing Antibody Targeting Glycoprotein B and the gH/gL/pUL128/130/131 Complex of Human Cytomegalovirus.

Antimicrob Agents Chemother 2021 02 17;65(3). Epub 2021 Feb 17.

Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA.

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause developmental disorders following congenital infection and life-threatening complications among transplant patients. Potent neutralizing monoclonal antibodies (MAbs) are promising drug candidates against HCMV infection. HCMV can infect a broad range of cell types. Therefore, single neutralizing antibodies targeting one HCMV glycoprotein often lack either potency or broad cell-type coverage. We previously characterized two human-derived HCMV neutralizing MAbs. One was the broadly neutralizing MAb 3-25, which targets the antigenic domain 2 of glycoprotein B (gB). The other was the highly potent MAb 2-18, which specifically recognizes the gH/gL/pUL128/130/131 complex (pentamer). To combine the strengths of gB- and pentamer-targeting MAbs, we developed an IgG-single-chain variable fragment (scFv) bispecific antibody by fusing the 2-18 scFv to the heavy-chain C terminus of MAb 3-25. The resulting bispecific antibody showed high-affinity binding to both gB and pentamer. Functionally, the bispecific antibody demonstrated a combined neutralization breadth and potency of the parental MAbs in multiple cell lines and inhibited postinfection viral spreading. Furthermore, the bispecific antibody was easily produced in CHO cells at a yield above 1 g/liter and showed a single-dose pharmacokinetic profile comparable to that of parental MAb 3-25 in rhesus macaques. Importantly, the bispecific antibody retained broadly and potent neutralizing activity after 21 days in circulation. Taken together, our research provides a proof-of-concept study for developing bispecific neutralizing antibody therapies against HCMV infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/AAC.02422-20DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092496PMC
February 2021

Spike mutation D614G alters SARS-CoV-2 fitness.

Nature 2021 04 26;592(7852):116-121. Epub 2020 Oct 26.

Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein substitution D614G became dominant during the coronavirus disease 2019 (COVID-19) pandemic. However, the effect of this variant on viral spread and vaccine efficacy remains to be defined. Here we engineered the spike D614G substitution in the USA-WA1/2020 SARS-CoV-2 strain, and found that it enhances viral replication in human lung epithelial cells and primary human airway tissues by increasing the infectivity and stability of virions. Hamsters infected with SARS-CoV-2 expressing spike(D614G) (G614 virus) produced higher infectious titres in nasal washes and the trachea, but not in the lungs, supporting clinical evidence showing that the mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increase transmission. Sera from hamsters infected with D614 virus exhibit modestly higher neutralization titres against G614 virus than against D614 virus, suggesting that the mutation is unlikely to reduce the ability of vaccines in clinical trials to protect against COVID-19, and that therapeutic antibodies should be tested against the circulating G614 virus. Together with clinical findings, our work underscores the importance of this variant in viral spread and its implications for vaccine efficacy and antibody therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2895-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158177PMC
April 2021

Spike mutation D614G alters SARS-CoV-2 fitness and neutralization susceptibility.

Res Sq 2020 Sep 10. Epub 2020 Sep 10.

The University of Texas Medical Branch at Galveston.

A spike protein mutation D614G became dominant in SARS-CoV-2 during the COVID-19 pandemic. However, the mutational impact on viral spread and vaccine efficacy remains to be defined. Here we engineer the D614G mutation in the SARS-CoV-2 USA-WA1/2020 strain and characterize its effect on viral replication, pathogenesis, and antibody neutralization. The D614G mutation significantly enhances SARS-CoV-2 replication on human lung epithelial cells and primary human airway tissues, through an improved infectivity of virions with the spike receptor-binding domain in an "up" conformation for binding to ACE2 receptor. Hamsters infected with D614 or G614 variants developed similar levels of weight loss. However, the G614 virus produced higher infectious titers in the nasal washes and trachea, but not lungs, than the D614 virus. The hamster results confirm clinical evidence that the D614G mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increases transmission. For antibody neutralization, sera from D614 virus-infected hamsters consistently exhibit higher neutralization titers against G614 virus than those against D614 virus, indicating that (i) the mutation may not reduce the ability of vaccines in clinical trials to protect against COVID-19 and (ii) therapeutic antibodies should be tested against the circulating G614 virus before clinical development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.21203/rs.3.rs-70482/v1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7491579PMC
September 2020

Spike mutation D614G alters SARS-CoV-2 fitness and neutralization susceptibility.

bioRxiv 2020 Sep 2. Epub 2020 Sep 2.

Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX, USA.

A spike protein mutation D614G became dominant in SARS-CoV-2 during the COVID-19 pandemic. However, the mutational impact on viral spread and vaccine efficacy remains to be defined. Here we engineer the D614G mutation in the SARS-CoV-2 USA-WA1/2020 strain and characterize its effect on viral replication, pathogenesis, and antibody neutralization. The D614G mutation significantly enhances SARS-CoV-2 replication on human lung epithelial cells and primary human airway tissues, through an improved infectivity of virions with the spike receptor-binding domain in an "up" conformation for binding to ACE2 receptor. Hamsters infected with D614 or G614 variants developed similar levels of weight loss. However, the G614 virus produced higher infectious titers in the nasal washes and trachea, but not lungs, than the D614 virus. The hamster results confirm clinical evidence that the D614G mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increases transmission. For antibody neutralization, sera from D614 virus-infected hamsters consistently exhibit higher neutralization titers against G614 virus than those against D614 virus, indicating that (i) the mutation may not reduce the ability of vaccines in clinical trials to protect against COVID-19 and (ii) therapeutic antibodies should be tested against the circulating G614 virus before clinical development.

Importance: Understanding the evolution of SARS-CoV-2 during the COVID-19 pandemic is essential for disease control and prevention. A spike protein mutation D614G emerged and became dominant soon after the pandemic started. By engineering the D614G mutation into an authentic wild-type SARS-CoV-2 strain, we demonstrate the importance of this mutation to (i) enhanced viral replication on human lung epithelial cells and primary human airway tissues, (ii) improved viral fitness in the upper airway of infected hamsters, and (iii) increased susceptibility to neutralization. Together with clinical findings, our work underscores the importance of this mutation in viral spread, vaccine efficacy, and antibody therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.09.01.278689DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480025PMC
September 2020

Furin Cleavage Site Is Key to SARS-CoV-2 Pathogenesis.

bioRxiv 2020 Aug 26. Epub 2020 Aug 26.

SARS-CoV-2 has resulted in a global pandemic and shutdown economies around the world. Sequence analysis indicates that the novel coronavirus (CoV) has an insertion of a furin cleavage site (PRRAR) in its spike protein. Absent in other group 2B CoVs, the insertion may be a key factor in the replication and virulence of SARS-CoV-2. To explore this question, we generated a SARS-CoV-2 mutant lacking the furin cleavage site (ΔPRRA) in the spike protein. This mutant virus replicated with faster kinetics and improved fitness in Vero E6 cells. The mutant virus also had reduced spike protein processing as compared to wild-type SARS-CoV-2. In contrast, the ΔPRRA had reduced replication in Calu3 cells, a human respiratory cell line, and had attenuated disease in a hamster pathogenesis model. Despite the reduced disease, the ΔPRRA mutant offered robust protection from SARS-CoV-2 rechallenge. Importantly, plaque reduction neutralization tests (PRNT ) with COVID-19 patient sera and monoclonal antibodies against the receptor-binding domain found a shift, with the mutant virus resulting in consistently reduced PRNT titers. Together, these results demonstrate a critical role for the furin cleavage site insertion in SARS-CoV-2 replication and pathogenesis. In addition, these findings illustrate the importance of this insertion in evaluating neutralization and other downstream SARS-CoV-2 assays.

Importance: As COVID-19 has impacted the world, understanding how SARS-CoV-2 replicates and causes virulence offers potential pathways to disrupt its disease. By removing the furin cleavage site, we demonstrate the importance of this insertion to SARS-CoV-2 replication and pathogenesis. In addition, the findings with Vero cells indicate the likelihood of cell culture adaptations in virus stocks that can influence reagent generation and interpretation of a wide range of data including neutralization and drug efficacy. Overall, our work highlights the importance of this key motif in SARS-CoV-2 infection and pathogenesis.

Article Summary: A deletion of the furin cleavage site in SARS-CoV-2 amplifies replication in Vero cells, but attenuates replication in respiratory cells and pathogenesis in vivo. Loss of the furin site also reduces susceptibility to neutralization .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.08.26.268854DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457603PMC
August 2020

Recognition of a highly conserved glycoprotein B epitope by a bivalent antibody neutralizing HCMV at a post-attachment step.

PLoS Pathog 2020 08 3;16(8):e1008736. Epub 2020 Aug 3.

Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America.

Human cytomegalovirus (HCMV) is one of the main causative agents of congenital viral infection in neonates. HCMV infection also causes serious morbidity and mortality among organ transplant patients. Glycoprotein B (gB) is a major target for HCMV neutralizing antibodies, yet the underlying neutralization mechanisms remain largely unknown. Here we report that 3-25, a gB-specific monoclonal antibody previously isolated from a healthy HCMV-positive donor, efficiently neutralized 14 HCMV strains in both ARPE-19 cells and MRC-5 cells. The core epitope of 3-25 was mapped to a highly conserved linear epitope on antigenic domain 2 (AD-2) of gB. A 1.8 Å crystal structure of 3-25 Fab in complex with the peptide epitope revealed the molecular determinants of 3-25 binding to gB at atomic resolution. Negative-staining electron microscopy (EM) 3D reconstruction of 3-25 Fab in complex with de-glycosylated postfusion gB showed that 3-25 Fab fully occupied the gB trimer at the N-terminus with flexible binding angles. Functionally, 3-25 efficiently inhibited HCMV infection at a post-attachment step by interfering with viral membrane fusion, and restricted post-infection viral spreading in ARPE-19 cells. Interestingly, bivalency was required for HCMV neutralization by AD-2 specific antibody 3-25 but not the AD-4 specific antibody LJP538. In contrast, bivalency was not required for HCMV binding by both antibodies. Taken together, our results reveal the structural basis of gB recognition by 3-25 and demonstrate that inhibition of viral membrane fusion and a requirement of bivalency may be common for gB AD-2 specific neutralizing antibody.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1008736DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425986PMC
August 2020

Identification of adipocyte plasma membrane-associated protein as a novel modulator of human cytomegalovirus infection.

PLoS Pathog 2019 07 29;15(7):e1007914. Epub 2019 Jul 29.

Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Texas, United States of America.

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause disability in newborns and serious clinical diseases in immunocompromised patients. HCMV has a large genome with enormous coding potential; its viral particles are equipped with complicated glycoprotein complexes and can infect a wide range of human cells. Although multiple host cellular receptors interacting with viral glycoproteins have been reported, the mechanism of HCMV infection remains a mystery. Here we report identification of adipocyte plasma membrane-associated protein (APMAP) as a novel modulator active in the early stage of HCMV infection. APMAP is necessary for HCMV infection in both epithelial cells and fibroblasts; knockdown of APMAP expression significantly reduced HCMV infection of these cells. Interestingly, ectopic expression of human APMAP in cells refractory to HCMV infection, such as canine MDCK and murine NIH/3T3 cells, promoted HCMV infection. Furthermore, reduction in viral immediate early (IE) gene transcription at 6 h post infection and delayed nucleus translocation of tegument delivered pp65 at 4 h post infection were detected in APMAP-deficient cells but not in the wildtype cells. These results suggest that APMAP plays a role in the early stage of HCMV infection. Results from biochemical studies of APMAP and HCMV proteins suggest that APMAP could participate in HCMV infection through interaction with gH/gL containing glycoprotein complexes at low pH and mediate nucleus translocation of tegument pp65. Taken together, our results suggest that APMAP functions as a modulator promoting HCMV infection in multiple cell types and is an important player in the complex HCMV infection mechanism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1007914DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687193PMC
July 2019

Structure, Immunogenicity, and Protective Mechanism of an Engineered Enterovirus 71-Like Particle Vaccine Mimicking 80S Empty Capsid.

J Virol 2018 01 14;92(1). Epub 2017 Dec 14.

Unit of Vaccinology and Antiviral Strategies, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China

Enterovirus 71 (EV71) is the major causative agent of severe hand, foot, and mouth disease, which affects millions of young children in the Asia-Pacific region annually. In this study, we engineered a novel EV71 virus-like particle (VLP) that lacks VP4 (therefore designated VLP) and investigated its structure, antigenicity, and vaccine potential. The cryo-electron microscopy (cryo-EM) structure of VLP was reconstructed to 3.71-Å resolution. Results from structural and biochemical analyses revealed that VLP resembles the end product of the viral uncoating process, the 80S empty capsid. VLP is able to elicit high-titer neutralizing antibodies and to fully protect mice against lethal viral challenge. Mechanistic studies showed that, at the cellular level, the anti-VLP sera exert neutralization effects at both pre- and postattachment stages by inhibiting both virus attachment and internalization, and at the molecular level, the antisera can block multiple interactions between EV71 and its key receptors. Our study gives a better understanding of EV71 capsid assembly and provides important information for the design and development of new-generation vaccines for EV71, and perhaps for other enteroviruses, as well. Enterovirus 71 (EV71) infection may lead to severe hand, foot, and mouth disease, with significant morbidity and mortality. Knowledge regarding EV71 particle assembly remains limited. Here, we report the generation and characterization of a novel EV71 virus-like particle that lacks the VP4 capsid subunit protein. This particle, termed VLP, structurally mimics the 80S empty capsid, which is the end stage of EV71 uncoating. We further show that VLP exhibits desirable immunogenicity and protective efficacy in proof-of-concept studies. In addition, the inhibitory mechanisms of the VLP-induced antibodies are unraveled at both the cellular and molecular levels. Our work provides the first evidence of picornaviral particle assembly in the complete absence of VP4 and identifies VLP as an improved EV71 vaccine candidate with desirable traits. These findings not only enhance our understanding of particle assembly and uncoating of picornaviruses, but also provide important information for structure-guided vaccine design for EV71 and other enteroviruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.01330-17DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5730765PMC
January 2018

Coxsackievirus A16 utilizes cell surface heparan sulfate glycosaminoglycans as its attachment receptor.

Emerg Microbes Infect 2017 Jul 26;6(7):e65. Epub 2017 Jul 26.

Unit of Vaccinology &Antiviral Strategies, CAS Key Laboratory of Molecular Virology &Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.

Coxsackievirus A16 (CVA16) is one of the major pathogens responsible for hand, foot and mouth disease, which affects more than two million children in the Asian-Pacific region annually. Previous studies have shown that scavenger receptor B2 is a functional receptor for CVA16 that facilitates the uncoating process. However, it remains unclear whether other receptors are required for efficient CVA16 infection. In this study, by using a variety of assays we demonstrated that CVA16 utilizes surface heparan sulfate glycosaminoglycans as its attachment receptor. We further showed that five surface-exposed positively charged residues located in a cluster at the five-fold vertex of the virion are critical to heparan sulfate binding and cellular attachment of CVA16. Among the five residues, the arginine at position 166 (R166) of VP1 capsid protein appeared to be the most important for the interaction between CVA16 and heparan sulfate. Alanine substitution at this site (R166A) almost completely abolished heparan sulfate binding and cellular attachment of the virus. Our work achieves insight into the early events of CVA16 infection, thereby providing information that may facilitate the rational design of antiviral drugs and vaccines against CVA16 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/emi.2017.55DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5567171PMC
July 2017

Beta-Propiolactone Inactivation of Coxsackievirus A16 Induces Structural Alteration and Surface Modification of Viral Capsids.

J Virol 2017 04 29;91(8). Epub 2017 Mar 29.

Vaccine Research Center, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China

Beta-propiolactone (BPL) is an inactivating agent that is widely used in the vaccine industry. However, its effects on vaccine protein antigens and its mechanisms of action remain poorly understood. Here we present cryo-electron microscopy (cryo-EM) structures of BPL-treated coxsackievirus A16 (CVA16) mature virions and procapsids at resolutions of 3.9 Å and 6.5 Å, respectively. Notably, both particles were found to adopt an expanded conformation resembling the 135S-like uncoating intermediate, with characteristic features including an opened 2-fold channel, the externalization of the N terminus of VP1 capsid protein, and the absence of pocket factor. However, major neutralizing epitopes are very well preserved on these particles. Further biochemical analyses revealed that BPL treatment impairs the abilities of CVA16 particles to bind to the attachment receptor heparan sulfate and to a conformation-dependent monoclonal antibody in a BPL dose-dependent manner, indicating that BPL is able to modify surface-exposed amino acid residues. Taken together, our results demonstrate that BPL treatment may induce alteration of the overall structure and surface properties of a nonenveloped viral capsid, thus revealing a novel mode of action of BPL. Beta-propiolactone (BPL) is commonly used as an inactivating reagent to produce viral vaccines. It is recognized that BPL inactivates viral infectivity through modification of viral nucleic acids. However, its effect on viral proteins remains largely unknown. Here, we present high-resolution cryo-EM structures of BPL-treated coxsackievirus A16 (CVA16) mature virions and procapsids, which reveals an expanded overall conformation and characteristic features that are typical for the 135S-like uncoating intermediate. We further show that the BPL concentration affects the binding of inactivated CVA16 particles to their receptor/antibody. Thus, BPL treatment can alter the overall structure and surface properties of viral capsids, which may lead to antigenic and immunogenic variations. Our findings provide important information for future development of BPL-inactivated vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.00038-17DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375664PMC
April 2017

Transcutaneous immunization via rapidly dissolvable microneedles protects against hand-foot-and-mouth disease caused by enterovirus 71.

J Control Release 2016 12 25;243:291-302. Epub 2016 Oct 25.

National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China. Electronic address:

Recent large outbreaks of hand-foot-and-mouth disease (HFMD) have seriously affected the health of young children. Enterovirus 71 (EV71) is the main causative agent of HFMD. Herein, for the first time, rapidly dissolvable microneedles (MNs) loaded with EV71 virus-like particles (VLPs) were evaluated whether they could induce robust immune responses that confer protection against EV71 infection. The characteristics of prepared MNs including hygroscopy, mechanical strength, insertion capacity, dissolution profile, skin irritation and storage stability were comprehensively assessed. EV71 VLPs remained morphologically stable during fabrication. The MNs made of sodium hyaluronate maintained their insertion ability for at least 3h even at a high relative humidity of 75%. With the aid of spring-operated applicator, EV71 MNs (approximately 500μm length) could be readily penetrated into the mouse skin in vivo, and then rapidly dissolved to release encapsulated antigen within 2min. Additionally, MNs induced slight erythema that disappeared within a few hours. More importantly, mouse immunization and virus challenge studies demonstrated that MNs immunization induced high level of antibody responses conferring full protection against lethal EV71 virus challenge that were comparable to conventional intramuscular injection, but with only 1/10th of the delivered antigen (dose sparing). Consequently, our rapidly dissolving MNs may present as an effective and promising transcutaneous immunization device for HFMD prophylaxis among children.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2016.10.019DOI Listing
December 2016

Inactivated coxsackievirus A10 experimental vaccines protect mice against lethal viral challenge.

Vaccine 2016 09 22;34(41):5005-5012. Epub 2016 Aug 22.

Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China. Electronic address:

Coxsackievirus A10 (CVA10) has become one of the major causative agents of hand, foot and mouth disease (HFMD). It is now recognized that CVA10 should be targeted for vaccine development. We report here that β-propiolactone inactivated whole-virus based CVA10 vaccines can elicit protective immunity in mice. We prepared two inactivated CVA10 experimental vaccines derived from the prototype strain CVA10/Kowalik and from a clinical isolate CVA10/S0148b, respectively. Immunization with the experimental vaccines elicited CVA10-specific serum antibodies in mice. The antisera from vaccinated mice could potently neutralize in vitro infection with either homologous or heterologous CVA10 strains. Importantly, passive transfer of the anti-CVA10 sera protected recipient mice against CVA10/Kowalik or CVA10/S0148b infections. Moreover, active immunization with the inactivated vaccines also conferred protection against homologous and heterologous infections in mice. Collectively, our results demonstrate the proof-of-concept for inactivated whole-virus based CVA10 vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2016.08.033DOI Listing
September 2016

Virus-like particle-based vaccine against coxsackievirus A6 protects mice against lethal infections.

Vaccine 2016 07 20;34(34):4025-31. Epub 2016 Jun 20.

Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. Electronic address:

Coxsackievirus A6 (CA6) is emerging as one of the major causative agents of hand, foot, and mouth disease (HFMD) worldwide. However, no vaccine is currently available for preventing CA6 infection. Here, we report the development of a virus-like particle (VLP)-based recombinant vaccine for CA6. We produced CA6 VLPs in insect cells by infecting the cells with a baculovirus coexpressing the genes encoding CA6 P1 and 3CD. Biochemical analyses showed that the produced VLPs consisted of VP0, VP1, and VP3 capsid subunit proteins generated by the cleavage of P1 by 3CD. Mice immunized with these VLPs produced CA6-specific serum antibodies. Passive transfer of antisera from CA6 VLP-immunized mice protected recipient mice from lethal infections caused by homologous and heterologous CA6 strains. Moreover, active immunization of mice with CA6 VLPs efficiently conferred protection against both homologous and heterologous CA6 infections. These results suggested that CA6 VLP-based recombinant vaccine is a promising candidate vaccine for preventing CA6 infection and can be incorporated into a multivalent HFMD vaccine formulation to achieve broad-spectrum and effective prevention of this disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2016.06.028DOI Listing
July 2016

Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody.

PLoS Pathog 2016 Mar 3;12(3):e1005454. Epub 2016 Mar 3.

National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

Enterovirus 71 (EV71) is the main pathogen responsible for hand, foot and mouth disease with severe neurological complications and even death in young children. We have recently identified a highly potent anti-EV71 neutralizing monoclonal antibody, termed D5. Here we investigated the structural basis for recognition of EV71 by the antibody D5. Four three-dimensional structures of EV71 particles in complex with IgG or Fab of D5 were reconstructed by cryo-electron microscopy (cryo-EM) single particle analysis all at subnanometer resolutions. The most critical EV71 mature virion-Fab structure was resolved to a resolution of 4.8 Å, which is rare in cryo-EM studies of virus-antibody complex so far. The structures reveal a bivalent binding pattern of D5 antibody across the icosahedral 2-fold axis on mature virion, suggesting that D5 binding may rigidify virions to prevent their conformational changes required for subsequent RNA release. Moreover, we also identified that the complementary determining region 3 (CDR3) of D5 heavy chain directly interacts with the extremely conserved VP1 GH-loop of EV71, which was validated by biochemical and virological assays. We further showed that D5 is indeed able to neutralize a variety of EV71 genotypes and strains. Moreover, D5 could potently confer protection in a mouse model of EV71 infection. Since the conserved VP1 GH-loop is involved in EV71 binding with its uncoating receptor, the scavenger receptor class B, member 2 (SCARB2), the broadly neutralizing ability of D5 might attribute to its inhibition of EV71 from binding SCARB2. Altogether, our results elucidate the structural basis for the binding and neutralization of EV71 by the broadly neutralizing antibody D5, thereby enhancing our understanding of antibody-based protection against EV71 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1005454DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777393PMC
March 2016

Coxsackievirus A16-like particles produced in Pichia pastoris elicit high-titer neutralizing antibodies and confer protection against lethal viral challenge in mice.

Antiviral Res 2016 May 21;129:47-51. Epub 2016 Feb 21.

Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. Electronic address:

Coxsackievirus A16 (CA16) is a major causative agent of hand, foot and mouse disease (HFMD) which has been affecting millions of young children annually in the Asia-Pacific region over the last seven years. However, no commercial CA16 vaccines are currently available. In the present study, we investigated the expression of virus-like particles (VLPs) of CA16 in Pichia pastoris yeast and their immunogenicity and protective efficacy in mice. We found that CA16-VLPs could be produced at relatively high levels in P. pastoris yeast transformed with a construct co-expressing the P1 and 3CD proteins of CA16. Mice immunized with the yeast-derived CA16-VLPs produced high-titer serum antibodies with potent neutralization effect specifically on CA16. More importantly, passive immunization with the yeast-derived VLPs fully protected neonatal mice against CA16 lethal challenge in both antisera transfer and maternal immunization experiments. Collectively, our results demonstrate that P. pastoris-derived CA16-VLPs represent a promising CA16 vaccine candidate with proven preclinical efficacy and desirable traits for manufacturing at industrial scale.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2016.02.011DOI Listing
May 2016

A bivalent virus-like particle based vaccine induces a balanced antibody response against both enterovirus 71 and norovirus in mice.

Vaccine 2015 Oct 28;33(43):5779-5785. Epub 2015 Sep 28.

Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. Electronic address:

Noroviruses are the main cause of severe viral gastroenteritis, which results in estimated 200,000 deaths each year, primarily in children in the developing world. Genogroup II.4 (GII.4) strains are responsible for the majority of norovirus outbreaks. Enterovirus 71 (EV71), the leading causative agent of hand, foot and mouth disease, has recently been prevalent in Asia-Pacific regions, resulting in significant morbidity and mortality in young children. However, no vaccine is commercially available for either norovirus GII.4 or EV71. Recombinant virus-like particles (VLPs) derived from either GII.4 or EV71 have been shown to be promising monovalent vaccine candidates. In this study, we investigate the possibility to formulate a VLP-based bivalent vaccine for both norovirus GII.4 and EV71. The GII.4- and EV71-VLPs were produced in a baculovirus-insect cell expression system. A bivalent combination vaccine comprised of GII.4 and EV71 VLPs was formulated and compared with monovalent GII.4- and EV71-VLPs for their immunogenicity in mice. We found that the bivalent vaccine elicited durable antibody responses toward both GII.4 and EV71, and the antibody titers were comparable to that induced by the monovalent vaccines, indicating there is no immunological interference between the two antigens in the combination vaccine. More significantly, the bivalent vaccine-immunized mouse sera could efficiently neutralize EV71 infection and block GII.4-VLP binding to mucin. Together, our results demonstrate that the experimental combination vaccine comprised of GII.4 and EV71-VLPs is able to induce a balanced protective antibody response, and therefore strongly support further preclinical and clinical development of such a bivalent VLP vaccine targeting both norovirus GII.4 and EV71.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2015.09.043DOI Listing
October 2015

Single Neutralizing Monoclonal Antibodies Targeting the VP1 GH Loop of Enterovirus 71 Inhibit both Virus Attachment and Internalization during Viral Entry.

J Virol 2015 Dec 23;89(23):12084-95. Epub 2015 Sep 23.

Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China

Unlabelled: Antibodies play a critical role in immunity against enterovirus 71 (EV71). However, how EV71-specific antibodies neutralize infections remains poorly understood. Here we report the working mechanism for a group of three monoclonal antibodies (MAbs) that potently neutralize EV71. We found that these three MAbs (termed D5, H7, and C4, respectively) recognize the same conserved neutralizing epitope within the VP1 GH loop of EV71. Single MAbs in this group, exemplified by D5, could inhibit EV71 infection in cell cultures at both the pre- and postattachment stages in a cell type-independent manner. Specifically, MAb treatment resulted in the blockade of multiple steps of EV71 entry, including virus attachment, internalization, and subsequent uncoating and RNA release. Furthermore, we show that the D5 and C4 antibodies can interfere with EV71 binding to its key receptors, including heparan sulfate, SCARB2, and PSGL-1, thus providing a possible explanation for the observed multi-inhibitory function of the MAbs. Collectively, our study unravels the mechanism of neutralization by a unique group of anti-EV71 MAbs targeting the conserved VP1 GH loop. The findings should enhance our understanding of MAb-mediated immunity against enterovirus infections and accelerate the development of MAb-based anti-EV71 therapeutic drugs.

Importance: Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD), which has caused significant morbidities and mortalities in young children. Neither a vaccine nor an antiviral drug is available. Neutralizing antibodies are major protective components in EV71 immunity. Here, we unraveled an unusual mechanism of EV71 neutralization by a group of three neutralizing monoclonal antibodies (MAbs). All of these MAbs bound the same conserved epitope located at the VP1 GH loop of EV71. Interestingly, mechanistic studies showed that single antibodies in this MAb group could block EV71 attachment and internalization during the viral entry process and interfere with EV71 binding to heparan sulfate, SCARB2, and PSGL-1 molecules, which are key receptors involved in different steps of EV71 entry. Our findings greatly enhance the understanding of the interplays among EV71, neutralizing antibodies, and host receptors, which in turn should facilitate the development of an MAb-based anti-EV71 therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.02189-15DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4645313PMC
December 2015

Hexon-modified recombinant E1-deleted adenoviral vectors as bivalent vaccine carriers for Coxsackievirus A16 and Enterovirus 71.

Vaccine 2015 Sep 19;33(39):5087-94. Epub 2015 Aug 19.

Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China. Electronic address:

Hand, foot and mouth disease (HFMD) is a major public health concern in Asia; more efficient vaccines against HFMD are urgently required. Adenoviral (Ad) capsids have been used widely for the presentation of foreign antigens to induce specific immune responses in the host. Here, we describe a novel bivalent vaccine for HFMD based on the hexon-modified, E1-deleted chimpanzee adenovirus serotype 68 (AdC68). The novel vaccine candidate was generated by incorporating the neutralising epitope of Coxsackievirus A16 (CA16), PEP71, into hypervariable region 1 (HVR1), and a shortened neutralising epitope of Enterovirus 71 (EV71), sSP70, into HVR2 of the AdC68 hexon. In order to enhance the immunogenicity of EV71, VP1 of EV71 was cloned into the E1-region of the AdC68 vectors. The results demonstrated that these two epitopes were well presented on the virion surface and had high affinity towards specific antibodies, and VP1 of EV71 was also significantly expressed. In pre-clinical mouse models, the hexon-modified AdC68 elicited neutralising antibodies against both CA16 and EV71, which conferred protection to suckling mice against a lethal challenge of CA16 and EV71. In summary, this study demonstrates that the hexon-modified AdC68 may represent a promising bivalent vaccine carrier against EV71 and CA16 and an epitope-display platform for other pathogens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2015.08.016DOI Listing
September 2015

High-yield production of recombinant virus-like particles of enterovirus 71 in Pichia pastoris and their protective efficacy against oral viral challenge in mice.

Vaccine 2015 May 25;33(20):2335-41. Epub 2015 Mar 25.

Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. Electronic address:

Enterovirus 71 (EV71) is one of the major causative pathogens of hand, foot and mouth disease (HFMD), which is highly prevalent in the Asia-Pacific regions. Severe HFMD cases with neurological complications and even death are often associated with EV71 infections. However, no licensed EV71 vaccine is currently available. Recombinant virus-like particles (VLPs) of EV71 have been produced and shown to be a promising vaccine candidate in preclinical studies. However, the performance of current recombinant expression systems for EV71 VLP production remains unsatisfactory with regard to VLP yield and manufacturing procedure, and thus hinders further product development. In this study, we evaluated the expression of EV71 VLPs in Pichia pastoris and determined their protective efficacy in mouse models of EV71 infections. We showed that EV71 VLPs could be produced at high levels up to 4.9% of total soluble protein in transgenic P. pastoris yeast co-expressing P1 and 3CD proteins of EV71. The resulting yeast-produced VLPs potently induced neutralizing antibodies against homologous and heterologous EV71 strains in mice. More importantly, maternal immunization with VLPs protected neonatal mice in both intraperitoneal and oral challenge experiments. Collectively, these results demonstrated the success of simple, high-yield production of EV71 VLPs in transgenic P. pastoris, thus lifting the major roadblock in commercial development of VLP-based EV71 vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2015.03.034DOI Listing
May 2015

A virus-like particle based bivalent vaccine confers dual protection against enterovirus 71 and coxsackievirus A16 infections in mice.

Vaccine 2014 Jul 17;32(34):4296-303. Epub 2014 Jun 17.

Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China. Electronic address:

Enterovirus 71(EV71) and coxsackievirus A16 (CA16) are responsible for hand, foot and mouth disease which has been prevalent in Asia-Pacific regions, causing significant morbidity and mortality in young children. Co-circulation of and co-infection by both viruses underscores the importance and urgency of developing vaccines against both viruses simultaneously. Here we report the immunogenicity and protective efficacy of a bivalent combination vaccine comprised of EV71 and CA16 virus-like particles (VLPs). We show that monovalent EV71- or CA16-VLPs-elicited serum antibodies exhibited potent neutralization effect on the homotypic virus but little or no effect on the heterotypic one, whereas the antisera against the bivalent vaccine formulation were able to efficiently neutralize both EV71 and CA16, indicating there is no immunological interference between the two antigens with respect to their ability to induce virus-specific neutralizing antibodies. Passive immunization with monovalent VLP vaccines protected mice against a homotypic virus challenge but not heterotypic infection. Surprisingly, antibody-dependent enhancement (ADE) of disease was observed in mice passively transferred with mono-specific anti-CA16 VLP sera and subsequently challenged with EV71. In contrast, the bivalent VLP vaccine conferred full protection against lethal challenge by either EV71 or CA16, thus eliminating the potential of ADE. Taken together, our results demonstrate for the first time that the bivalent VLP approach represents a safe and efficacious vaccine strategy for both EV71 and CA16.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2014.06.025DOI Listing
July 2014
-->