Publications by authors named "Yusuke Kawazoe"

4 Publications

  • Page 1 of 1

Predicting programmed death-ligand 1 expression level in non-small cell lung cancer using a combination of peritumoral and intratumoral radiomic features on computed tomography.

Biomed Phys Eng Express 2022 02 1;8(2). Epub 2022 Feb 1.

Department of Radiation Oncology, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan.

In this study, we investigated the possibility of predicting expression levels of programmed death-ligand 1 (PD-L1) using radiomic features of intratumoral and peritumoral tumors on computed tomography (CT) images. We retrospectively analyzed 161 patients with non-small cell lung cancer. We extracted radiomic features for intratumoral and peritumoral regions on CT images. The null importance, least absolute shrinkage, and selection operator model were used to select the optimized feature subset to build the prediction models for the PD-L1 expression level. LightGBM with five-fold cross-validation was used to construct the prediction model and evaluate the receiver operating characteristics. The corresponding area under the curve (AUC) was calculated for the training and testing cohorts. The proportion of ambiguously clustered pairs was calculated based on consensus clustering to evaluate the validity of the selected features. In addition, Radscore was calculated for the training and test cohorts. For expression level of PD-L1 above 1%, prediction models that included radiomic features from the intratumoral region and a combination of radiomic features from intratumoral and peritumoral regions yielded an AUC of 0.83 and 0.87 and 0.64 and 0.74 in the training and test cohorts, respectively. In contrast, the models above 50% prediction yielded an AUC of 0.80, 0.97, and 0.74, 0.83, respectively. The selected features were divided into two subgroups based on PD-L1 expression levels≥50% or≥1%. Radscore was statistically higher for subgroup one than subgroup two when radiomic features for intratumoral and peritumoral regions were combined. We constructed a predictive model for PD-L1 expression level using CT images. The model using a combination of intratumoral and peritumoral radiomic features had a higher accuracy than the model with only intratumoral radiomic features.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
February 2022

Sex determination based on a thoracic vertebra and ribs evaluation using clinical chest radiography.

Leg Med (Tokyo) 2017 Jul 23;27:19-24. Epub 2017 Jun 23.

Department of Forensic Pathology and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.

Our aim was to investigate whether sex can be determined from a combination of geometric features obtained from the 10th thoracic vertebra, 6th rib, and 7th rib. Six hundred chest radiographs (300 males and 300 females) were randomly selected to include patients of six age groups (20s, 30s, 40s, 50s, 60s, and 70s). Each group included 100 images (50 males and 50 females). A total of 14 features, including 7 lengths, 5 indices for the vertebra, and 2 types of widths for ribs, were utilized and analyzed for sex determination. Dominant features contributing to sex determination were selected by stepwise discriminant analysis after checking the variance inflation factors for multicollinearity. The accuracy of sex determination using a combination of the vertebra and ribs was evaluated from the selected features by the stepwise discriminant analysis. The accuracies in each age group were also evaluated in this study. The accuracy of sex determination based on a combination of features of the vertebra and ribs was 88.8% (533/600). This performance was superior to that of the vertebra or ribs only. Moreover, sex determination of subjects in their 20s demonstrated the highest accuracy (96.0%, 96/100). The features selected in the stepwise discriminant analysis included some features in both the vertebra and ribs. These results indicate the usefulness of combined information obtained from the vertebra and ribs for sex determination. We conclude that a combination of geometric characteristics obtained from the vertebra and ribs could be useful for determining sex.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
July 2017

Osteodystrophy in Cholestatic Liver Diseases Is Attenuated by Anti-γ-Glutamyl Transpeptidase Antibody.

PLoS One 2015 29;10(9):e0139620. Epub 2015 Sep 29.

Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.

Background: Cholestatic liver diseases exhibit higher levels of serum γ-glutamyl transpeptidase (GGT) and incidence of secondary osteoporosis. GGT has been identified as a novel bone-resorbing factor that stimulates osteoclast formation. The aim of this study was to elucidate the interaction of elevated GGT levels and cholestatic liver disease-induced bone loss.

Methods: Wistar rats were divided into three groups: sham-operated control (SO) rats, bile duct ligation (BDL) rats, and anti-GGT antibody-treated BDL rats (AGT). Serum GGT level was measured. Bone mineral density (BMD) was analyzed by dual-energy X-ray absorptiometry. Bone morphometric parameters and microarchitectural properties were determined by micro-computed tomography and histomorphometry of the distal metaphysis of femurs. Alterations of bone metabolism-related factors were evaluated by cytokine array. Effects of GGT on osteoblasts or stromal cells were evaluated by RT-PCR, enzyme activity, and mineralization ability.

Results: Serum levels of GGT were significantly elevated in the BDL-group. In the BDL group, BMD, bone mass percentage, and osteoblast number were significantly decreased, whereas osteoclast number was significantly increased. These alterations were markedly attenuated in the AGT group. The mRNA levels of vascular endothelial growth factor-A, LPS-induced CXC chemokine, monocyte chemoattractant protein-1, tumor necrosis factor-α interleukin-1β and receptor activator of nuclear factor-kappa B ligand were upregulated, and those of interferon-γ and osteoprotegerin were downregulated in the GGT-treated stromal cells. Furthermore, GGT inhibited mineral nodule formation and expression of alkaline phosphatase and bone sialo-protein in osteoblastic cells.

Conclusion: Our results indicate that elevated GGT level is involved in hepatic osteodystrophy through secretion of bone resorbing factor from GGT-stimulated osteoblasts/bone marrow stromal cells. In addition, GGT also possesses suppressive effects on bone formation. Managing elevated GGT levels by anti-GGT antibody may become a novel therapeutic agent for hepatic osteodystrophy in chronic liver diseases.
View Article and Find Full Text PDF

Download full-text PDF

May 2016