Publications by authors named "Yrjö Viisanen"

8 Publications

  • Page 1 of 1

Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters.

Environ Sci Technol 2014 Dec 18;48(23):13675-84. Epub 2014 Nov 18.

Laboratory of Atmospheric Chemistry, Paul Scherrer Institute , Villigen 5232, Switzerland.

We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base. For the positive clusters, the charge is carried by one excess protonated base, while for the negative clusters it is carried by a deprotonated acid; the same is true for the neutral clusters after these have been ionized. During the experiments involving sulfuric acid and dimethylamine, it was possible to study the appearance time for all the clusters (positive, negative, and neutral). It appeared that, after the formation of the clusters containing three molecules of sulfuric acid, the clusters grow at a similar speed, independent of their charge. The growth rate is then probably limited by the arrival rate of sulfuric acid or cluster-cluster collision.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/es502380bDOI Listing
December 2014

Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles.

Science 2014 May;344(6185):717-21

Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland.

Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1243527DOI Listing
May 2014

Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere.

Nature 2013 Oct 6;502(7471):359-63. Epub 2013 Oct 6.

Goethe-University of Frankfurt, Institute for Atmospheric and Environmental Sciences, 60438 Frankfurt am Main, Germany.

Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature12663DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449521PMC
October 2013

Airborne fission products in the High Arctic after the Fukushima nuclear accident.

J Environ Radioact 2012 Dec 1;114:41-7. Epub 2012 Feb 1.

Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland.

High-volume aerosol samples were collected at the Mt. Zeppelin Global Atmosphere Watch station, Ny-Ålesund, Svalbard (78°58'N, 11°53'E). The samples were analysed to find out if the radionuclide emissions from the Fukushima nuclear power plant accident in March 2011 could be detected also in the atmosphere of the High Arctic. Iodine-131 and (134)Cs and (137)Cs were observed from 25 March 2011 onwards. The maximum (131)I, (134)Cs and (137)Cs activity concentrations were 810 ± 20, 659 ± 13, and 675 ± 7 μBq/m(3), respectively. The comparison between the measured (131)I activity concentrations at Mt. Zeppelin and those calculated with the SILAM dispersion model revealed that the timing of plume movements could be rather well predicted with the model. The activity concentration levels between the measurements and the model calculations deviated. This can be due to the inaccuracies in the source term. The (134)Cs:(137)Cs activity ratio recorded in Svalbard was high compared to earlier incidents. The ratio was close to 1 which is in agreement with other studies of the Fukushima releases. This distinctive activity ratio in the Fukushima debris could be used as a tracer in Arctic radioecology studies if the activity concentrations are high enough to be detected.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2011.12.027DOI Listing
December 2012

Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation.

Nature 2011 Aug 24;476(7361):429-33. Epub 2011 Aug 24.

CERN, CH-1211 Geneva, Switzerland.

Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100-1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H(2)SO(4)-H(2)O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature10343DOI Listing
August 2011

The carrier gas pressure effect in a laminar flow diffusion chamber, homogeneous nucleation of n-butanol in helium.

J Chem Phys 2006 Jun;124(22):224304

Finnish Meteorological Institute, Erik Palménin aukio 1, P.O. Box 503, F1-00101 Helsinki, Finland.

Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2200341DOI Listing
June 2006

Homogeneous nucleation rates of higher n-alcohols measured in a laminar flow diffusion chamber.

J Chem Phys 2004 Jun;120(24):11621-33

Finnish Meteorological Institute, Sahaajankatu 20E, FIN-00880 Helsinki, Finland.

Nucleation rate isotherms of n-butanol, n-pentanol, n-hexanol, n-heptanol, and n-octanol were measured in a laminar flow diffusion chamber using helium as carrier gas. The measurements were made at 250-310 K, corresponding to reduced temperatures of 0.43-0.50, and at atmospheric pressure. Experimental nucleation rate range was from 10(3) to 10(7) cm(-3) s(-1). The expression and accuracy of thermodynamic parameters, in particular equilibrium vapor pressure, were found to have a significant effect on calculated nucleation rates. The results were compared to the classical nucleation theory (CNT), the self-consistency corrected classical theory (SCC) and the Hale's scaled model of the CNT. The average ratio between the experimental and theoretical nucleation rates for all alcohols used was 1.5x10(3) when the CNT was used, and 0.2x10(-1) when the SCC was used and 0.7x10(-1) when the Hale's scaled theory was used. The average values represent all the alcohols used at the same reduced temperatures. The average ratio was about the same throughout the temperature range, although J(exp)/J(the) calculated with the Hale's scaled theory increased slightly with increasing temperature. The saturation ratio dependency was predicted closest to experiment with the classical nucleation theory. The nucleation rates were compared to those found in the literature. The measurements were in reasonable agreement with each other. The molecular content of critical alcohol clusters was between 35 and 80 molecules. At a fixed reduced temperature, the number of molecules in a critical cluster decreased as a function of alcohol carbon chain length. The number of molecules in critical clusters was compared to those predicted by the Kelvin equation. The theory predicted the critical cluster sizes well.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1751398DOI Listing
June 2004

Ambient silver concentration anomaly in the Finnish Arctic lower atmosphere.

Environ Sci Technol 2003 Dec;37(24):5537-44

Nuclear Engineering Teaching Lab, University of Texas, Pickle Research Campus, R-9000, Austin, Texas 78712, USA.

Mean silver concentrations in weekly particle samples collected at Kevo, northern Finland, were determined for the period of October 1964-March 1978 by neutron activation analysis. Two distinct periods were observed in the silver concentration levels over this time frame. During 1964-1970, mean weekly silver concentration levels were found in the range of 0.01-190 ng/m3 with an arithmetic mean of 2.19 ng/m3. A few very high silver concentration levels (>10 ng/m3) were observed in this period, some of which simultaneously occurred with some of the highest bromine and iodine concentration levels. During 1971-1978, silver concentration levels were in the range of 0.02-0.89 ng/m3 with a mean value of 0.09 ng/m3. The observed concentration levels in the later period matched well the data from the early 1990s reported at Sevettijärvi, northern Finland, about 60 km east of Kevo. Data analysis, historical records for this region, and residence time analysis (RTA) using wind back-trajectories show that occasional smelting of silver-rich Norilsk ores at the Nikel smelter, Kola Peninsula, was probably a significant contributor to elevated mean silver concentration levels during 1964-1970. RTA alone was not able to unambiguously identify the most probable source region for highest silver impacts at Kevo due to the weekly integrated nature of the samples collected. Critical examination of wind back-trajectories (24 per day) for specific high silver, bromine, and iodine concentration weeks was carried out to supplement the ensemble RTA analysis (2 back-trajectories per day). The supplemental back-trajectory analysis revealed that deposition of the smelter component silver as well as the sea components (bromine and iodine) could occur together at Kevo during these weekly sampling periods. The study implies that data from weekly integrated samples are insufficiently time-resolved for RTA methods alone to unambiguously resolve the sources contributing to ambient atmospheric concentrations at Kevo, Finland.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/es034004qDOI Listing
December 2003