Publications by authors named "Yoshitaka Oka"

70 Publications

Evaluation of differences and dosimetric influences of beam models using golden and multi-institutional measured beam datasets in radiation treatment planning systems.

Med Phys 2020 Nov 15;47(11):5852-5871. Epub 2020 Oct 15.

School of Medical Sciences, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.

Purpose: The beam model in radiation treatment planning systems (RTPSs) plays a crucial role in determining the accuracy of calculated dose distributions. The purpose of this study was to ascertain differences in beam models and their dosimetric influences when a golden beam dataset (GBD) and multi-institution measured beam datasets (MBDs) are used for beam modeling in RTPSs.

Methods: The MBDs collected from 15 institutions, and the MBDs' beam models, were compared with a GBD, and the GBD's beam model, for Varian TrueBeam linear accelerator. The calculated dose distributions of the MBDs' beam models were compared with those of the GBD's beam model for simple geometries in a water phantom. Calculated dose distributions were similarly evaluated in volumetric modulated arc therapy (VMAT) plans for TG-119 C-shape and TG-244 head and neck, at several dose constraints of the planning target volumes (PTVs), and organs at risk.

Results: The agreements of the MBDs with the GBD were almost all within ±1%. The calculated dose distributions for simple geometries in a water phantom also closely corresponded between the beam models of GBD and MBDs. Nevertheless, there were considerable differences between the beam models. The maximum differences between the mean energy of the energy spectra of GBD and MBDs were -0.12 MeV (-10.5%) in AcurosXB (AXB, Eclipse) and 0.11 MeV (7.7%) in collapsed cone convolution (CCC, RayStation). The differences in the VMAT calculated dose distributions varied for each dose region, plan, X-ray energy, and dose calculation algorithm. The ranges of the differences in the dose constraints were -5.6% to 3.0% for AXB and -24.1% to 2.8% for CCC. In several VMAT plans, the calculated dose distributions of GBD's beam model tended to be lower in high-dose regions and higher in low-dose regions than those of the MBDs' beam models.

Conclusions: We found that small differences in beam data have large impacts on the beam models, and on calculated dose distributions in clinical VMAT plan, even if beam data correspond within ±1%. GBD's beam model was not a representative beam model. The beam models of GBD and MBDs and their calculated dose distributions under clinical conditions were significantly different. These differences are most likely due to the extensive variation in the beam models, reflecting the characteristics of beam data. The energy spectrum and radial energy in the beam model varied in a wide range, even if the differences in the beam data were <±1%. To minimize the uncertainty of the calculated dose distributions in clinical plans, it was best to use the institutional MBD for beam modeling, or the beam model that ensures the accuracy of calculated dose distributions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.14493DOI Listing
November 2020

Examination of methods for manipulating serum 17β-Estradiol (E2) levels by analysis of blood E2 concentration in medaka (Oryzias latipes).

Gen Comp Endocrinol 2020 01 13;285:113272. Epub 2019 Sep 13.

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan; Present address: Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan. Electronic address:

It is widely known that reproduction in vertebrates is regulated by the hypothalamus-pituitary-gonadal (HPG) axis. Although the mechanism of the HPG axis has been well documented in mammals, it cannot be always applied to that in non-mammalian species, which is a great disadvantage in understanding reproduction of vertebrates in general. Recently, transgenic and genome editing tools have rapidly been developed in small teleosts, and thus these species are expected to be useful for the understanding of general mechanism of reproduction in vertebrates. One of the major sex steroid hormones in female vertebrates 17β-Estradiol (E2) plays crucial roles in the formation of sexual dimorphism and the HPG axis regulation. In spite of the importance of E2 in reproductive regulation, only a few studies have analyzed blood E2 levels in small teleosts that are easily amenable to genetic manipulation. In the present study, we analyzed blood E2 concentration in medaka and demonstrated that female medaka show diurnal changes in blood E2 concentration. We then examined the best method for manipulating the circulating E2. First, we found that ovariectomy (OVX) drastically removes endogenous E2 in a day in female medaka. We examined different methods for E2 administration and revealed that feeding administration of E2-containing food is the most convenient and physiological method for mimicking the diurnal E2 changes of female medaka. On the other hand, the medaka exposed to E2 containing water showed high blood E2 concentrations, which exceeds those of environmental water, suggesting that E2 may cause bioconcentration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2019.113272DOI Listing
January 2020

Multiple functions of non-hypophysiotropic gonadotropin releasing hormone neurons in vertebrates.

Zoological Lett 2019 22;5:23. Epub 2019 Jul 22.

Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, 113-0033 Japan.

Gonadotropin releasing hormone (GnRH) is a hypophysiotropic hormone that is generally thought to be important for reproduction. This hormone is produced by hypothalamic GnRH neurons and stimulates the secretion of gonadotropins. On the other hand, vertebrates also have non-hypophysiotropic GnRH peptides, which are produced by extrahypothalamic GnRH neurons. They are mainly located in the terminal nerve, midbrain tegmentum, trigeminal nerve, and spinal cord (sympathetic preganglionic nerves). In vertebrates, there are typically three paralogues (, , ). GnRH-expression in the non-hypophysiotropic neurons ( or in the terminal nerve and the trigeminal nerve in the midbrain tegmentum) occurs from the early developmental stages. Recent studies have suggested that non-hypophysiotropic GnRH neurons play various functional roles. Here, we summarize their anatomical/physiological properties and discuss their possible functions, focusing on studies in vertebrates. GnRH neurons in the terminal nerve show different spontaneous firing properties during the developmental stages. These neurons in adulthood show regular pacemaker firing, and it has been suggested that these neurons show neuromodulatory function related to the regulation of behavioral motivation, etc. In addition to their recognized role in neuromodulation in adult, in juvenile fish, these neurons, which show more frequent burst firing than in adults, are suggested to have novel functions. GnRH neurons in the midbrain tegmentum show regular pacemaker firing similar to that of the adult terminal nerve and are suggested to be involved in modulations of feeding (teleosts) or nutrition-related sexual behaviors (musk shrew). GnRH neurons in the trigeminal nerve are suggested to be involved in nociception and chemosensory avoidance, although the literature on their electrophysiological properties is limited. Sympathetic preganglionic cells in the spinal cord were first reported as peptidergic modulatory neurons releasing GnRH with a putative function in coordinating interaction between vasomotor and exocrine outflow in the sympathetic nervous system. The functional role of non-hypophysiotropic GnRH neurons may thus be in the global modulation of neural circuits in a manner dependent on internal conditions or the external environment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40851-019-0138-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6647275PMC
July 2019

Gene knockout analysis reveals essentiality of estrogen receptor β1 (Esr2a) for female reproduction in medaka.

Sci Rep 2019 06 20;9(1):8868. Epub 2019 Jun 20.

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.

In vertebrates, sex steroids play crucial roles in multiple systems related to reproduction. In females, estrogens and their receptor estrogen receptor (ER or Esr) play indispensable roles in the negative sex steroid feedback regulation of pituitary gonadotropin secretion, which prevents excessive development of ovarian follicles. However, the mechanism of this feedback regulation of a gonadotropin, follicle stimulating hormone (FSH), which is essential for folliculogenesis throughout vertebrates, is poorly understood. In the present study, we generated knockouts of all subtypes of nuclear estrogen receptors in a model teleost medaka, which is suitable for the study of endocrine control and behavioral assays, and analyzed fertility, behavior and functionality of estrogen feedback in each knockout line. Among the estrogen receptors, we revealed that an estrogen receptor Esr2a plays an essential role in this feedback regulation. In addition to this, we also found that esr2a females showed oviduct atresia, which causes complete infertility. Interestingly, esr2a females showed apparently normal sexual behavior but without oviposition in response to male courtship. This phenotype indicates that physical readiness and motivation of sexual behavior is independently controlled.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-45373-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586646PMC
June 2019

Sexually Dimorphic Neuropeptide B Neurons in Medaka Exhibit Activated Cellular Phenotypes Dependent on Estrogen.

Endocrinology 2019 04;160(4):827-839

Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan.

Brain and behavior of teleosts are highly sexually plastic throughout life, yet the underlying neural mechanisms are largely unknown. On examining brain morphology in the teleost medaka (Oryzias latipes), we identified distinctively large neurons in the magnocellular preoptic nucleus that occurred much more abundantly in females than in males. Examination of sex-reversed medaka showed that the sexually dimorphic abundance of these neurons is dependent on gonadal phenotype, but independent of sex chromosome complement. Most of these neurons in females, but none in males, produced neuropeptide B (Npb), whose expression is known to be estrogen-dependent and associated with female sexual receptivity. In phenotypic analysis, the female-specific Npb neurons had a large euchromatic nucleus with an abundant cytoplasm containing plentiful rough endoplasmic reticulum, exhibited increased overall transcriptional activity, and typically displayed a spontaneous regular firing pattern. These phenotypes, which are probably indicative of cellular activation, were attenuated by ovariectomy and restored by estrogen replacement. Furthermore, the population of Npb-expressing neurons emerged in adult males treated with estrogen, not through frequently occurring neurogenesis in the adult teleost brain, but through the activation of preexisting, quiescent male counterpart neurons. Collectively, our results demonstrate that the morphological, transcriptional, and electrophysiological phenotypes of sexually dimorphic preoptic Npb neurons are highly dependent on estrogen and can be switched between female and male patterns. These properties of the preoptic Npb neurons presumably underpin the neural mechanism for sexual differentiation and plasticity of brain and behavior in teleosts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2019-00030DOI Listing
April 2019

Genome-wide association study identifies seven novel susceptibility loci for primary open-angle glaucoma.

Hum Mol Genet 2018 04;27(8):1486-1496

Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.

Primary open-angle glaucoma (POAG) is the leading cause of irreversible blindness worldwide for which 15 disease-associated loci had been discovered. Among them, only 5 loci have been associated with POAG in Asians. We carried out a genome-wide association study and a replication study that included a total of 7378 POAG cases and 36 385 controls from a Japanese population. After combining the genome-wide association study and the two replication sets, we identified 11 POAG-associated loci, including 4 known (CDKN2B-AS1, ABCA1, SIX6 and AFAP1) and 7 novel loci (FNDC3B, ANKRD55-MAP3K1, LMX1B, LHPP, HMGA2, MEIS2 and LOXL1) at a genome-wide significance level (P < 5.0×10-8), bringing the total number of POAG-susceptibility loci to 22. The 7 novel variants were subsequently evaluated in a multiethnic population comprising non-Japanese East Asians (1008 cases, 591 controls), Europeans (5008 cases, 35 472 controls) and Africans (2341 cases, 2037 controls). The candidate genes located within the new loci were related to ocular development (LMX1B, HMGA2 and MAP3K1) and glaucoma-related phenotypes (FNDC3B, LMX1B and LOXL1). Pathway analysis suggested epidermal growth factor receptor signaling might be involved in POAG pathogenesis. Genetic correlation analysis revealed the relationships between POAG and systemic diseases, including type 2 diabetes and cardiovascular diseases. These results improve our understanding of the genetic factors that affect the risk of developing POAG and provide new insight into the genetic architecture of POAG in Asians.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddy053DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251544PMC
April 2018

Juvenile-Specific Burst Firing of Terminal Nerve GnRH3 Neurons Suggests Novel Functions in Addition to Neuromodulation.

Endocrinology 2018 04;159(4):1678-1689

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

Peptidergic neurons are suggested to play a key role in neuromodulation of animal behaviors in response to sensory cues in the environment. Terminal nerve gonadotropin-releasing hormone 3 (TN-GnRH3) neurons are thought to be one of the peptidergic neurons important for such neuromodulation in adult vertebrates. On the other hand, it has been reported that TN-GnRH3 neurons are labeled by a specific GnRH3 antibody from early developmental stages to adulthood and are thus suggested to produce mature GnRH3 peptide even in the early developmental stages. However, it remains unknown when TN-GnRH3 neurons show spontaneous burst firing, which is suggested to be involved in neuropeptide release. Using a whole-brain in vitro preparation of gnrh3:enhanced green fluorescent protein (EGFP) medaka fish, we first recorded spontaneous firings of TN-GnRH3 neurons after hatching to adulthood. Contrary to what one would expect from their neuromodulatory functions-that TN-GnRH3 neurons are more active in adulthood-TN-GnRH3 neurons in juveniles showed spontaneous burst firing more frequently than in adulthood (juvenile-specific burst firing). Ca2+ imaging of TN-GnRH3 neurons in juveniles may further suggest that juvenile-specific burst firing triggers neuropeptide release. Furthermore, juvenile-specific burst firing was suggested to be induced by blocking persistent GABAergic inhibition to the glutamatergic neurons, which leads to an increase in glutamatergic synaptic inputs to TN-GnRH3 neurons. The present study reports that peptidergic neurons show juvenile-specific burst firing involved in triggering peptide release and suggests that juvenile TN-GnRH3 neurons have novel functions, in addition to neuromodulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2017-03210DOI Listing
April 2018

Morphological Analysis of the Axonal Projections of EGFP-Labeled Esr1-Expressing Neurons in Transgenic Female Medaka.

Endocrinology 2018 02;159(2):1228-1241

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

Some hypothalamic neurons expressing estrogen receptor α (Esr1) are thought to transmit a gonadal estrogen feedback signal to gonadotropin-releasing hormone 1 (GnRH1) neurons, which is the final common pathway for feedback regulation of reproductive functions. Moreover, estrogen-sensitive neurons are suggested to control sexual behaviors in coordination with reproduction. In mammals, hypothalamic estrogen-sensitive neurons release the peptide kisspeptin and regulate GnRH1 neurons. However, a growing body of evidence in nonmammalian species casts doubt on the regulation of GnRH1 neurons by kisspeptin neurons. As a step toward understanding how estrogen regulates neuronal circuits for reproduction and sex behavior in vertebrates in general, we generated a transgenic (Tg) medaka that expresses enhanced green fluorescent protein (EGFP) specifically in esr1-expressing neurons (esr1 neurons) and analyzed their axonal projections. We found that esr1 neurons in the preoptic area (POA) project to the gnrh1 neurons. We also demonstrated by transcriptome and histological analyses that these esr1 neurons are glutamatergic or γ-aminobutyric acidergic (GABAergic) but not kisspeptinergic. We therefore suggest that glutamatergic and GABAergic esr1 neurons in the POA regulate gnrh1 neurons. This hypothesis is consistent with previous studies in mice that found that glutamatergic and GABAergic transmission is critical for estrogen-dependent changes in GnRH1 neuron firing. Thus, we propose that this neuronal circuit may provide an evolutionarily conserved mechanism for regulation of reproduction. In addition, we showed that telencephalic esr1 neurons project to medulla, which may control sexual behavior. Moreover, we found that some POA-esr1 neurons coexpress progesterone receptors. These neurons may form the neuronal circuits that regulate reproduction and sex behavior in response to the serum estrogen/progesterone.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2017-00873DOI Listing
February 2018

Evolutionally Conserved Function of Kisspeptin Neuronal System Is Nonreproductive Regulation as Revealed by Nonmammalian Study.

Endocrinology 2018 01;159(1):163-183

Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.

The kisspeptin neuronal system, which consists of a neuropeptide kisspeptin and its receptor Gpr54, is considered in mammals a key factor of reproductive regulation, the so-called hypothalamic-pituitary-gonadal (HPG) axis. However, in nonmammalian vertebrates, especially in teleosts, existence of kisspeptin regulation on the HPG axis is still controversial. In this study, we applied multidisciplinary techniques to a teleost fish, medaka, and examined possible kisspeptin regulation on the HPG axis. First, we generated knockout medaka for kisspeptin-related genes and found that they show normal fertility, gonadal maturation, and expression of gonadotropins. Moreover, the firing activity of GnRH1 neurons recorded by the patch clamp technique was not altered by kisspeptin application. Furthermore, in goldfish, in vivo kisspeptin administration did not show any positive effect on HPG axis regulation. However, as kisspeptin genes are completely conserved among vertebrates except birds, we surmised that kisspeptin should have some important nonreproductive functions in vertebrates. Therefore, to discover novel functions of kisspeptin, we generated a gpr54-1:enhanced green fluorescent protein (EGFP) transgenic medaka, whose gpr54-1-expressing cells are specifically labeled by EGFP. Analysis of neuronal projection of gpr54-1:EGFP-expressing neurons showed that these neurons in the ventrolateral preoptic area project to the pituitary and are probably involved in endocrine regulation other than gonadotropin release. Furthermore, combination of deep sequencing, histological, and electrophysiological analyses revealed various novel neural systems that are under control of kisspeptin neurons-that is, those expressing neuropeptide Yb, cholecystokinin, isotocin, vasotocin, and neuropeptide B. Thus, our new strategy to genetically label receptor-expressing neurons gives insights into various kisspeptin-dependent neuronal systems that may be conserved in vertebrates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2017-00808DOI Listing
January 2018

Posterior chamber phakic intraocular lens implantation: comparative, multicentre study in 351 eyes with low-to-moderate or high myopia.

Br J Ophthalmol 2018 02 13;102(2):177-181. Epub 2017 Jun 13.

Ray Eye Clinic, Hyogo, Japan.

Aim: To compare the clinical outcomes of posterior chamber phakic intraocular lens implantation with a central hole (Hole Implantable Collamer Lens (ICL), STAAR Surgical) for low-to-moderate myopia and for high myopia.

Methods: This multicentre retrospective case series comprised 351 eyes of 351 consecutive patients undergoing ICL implantation. Eyes were divided into groups based on preoperative degree of myopia: group 1; 57 eyes, manifest spherical equivalent less than -6 dioptres (D), and group 2; 294 eyes, -6 D or more. Safety, efficacy, predictability, stability and adverse events were compared preoperatively; and at 1 day, 1 week and 1, 3, 6 and 12 months postoperatively, RESULTS: Uncorrected and corrected visual acuities were -0.17±0.14 and -0.21±0.10 logMAR in group 1, and -0.16±0.09 and -0.21±0.08 logMAR in group 2, 1 year postoperatively. In groups 1 and 2, 98% and 99% of eyes were within 1.0 D of the targeted correction. Manifest refraction changes of -0.12±0.34 D (group 1) and -0.18±0.43 D (group 2) occurred from 1 day to 1 year. ICL exchanges were necessary in two eyes (0.7%) in group 2. No vision-threatening complications occurred at any time.

Conclusions: The ICL performed well for the correction of both low-to-moderate myopia and high myopia throughout the 1-year observation period. The clinical outcomes of ICL implantation for low-to-moderate myopia are essentially equivalent to those for high myopia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bjophthalmol-2017-310164DOI Listing
February 2018

High-Frequency Firing Activity of GnRH1 Neurons in Female Medaka Induces the Release of GnRH1 Peptide From Their Nerve Terminals in the Pituitary.

Endocrinology 2017 08;158(8):2603-2617

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.

Hypothalamic gonadotropin-releasing hormone (GnRH) neurons play an important role in promoting secretion of pituitary luteinizing hormone (LH) and ovulation by releasing GnRH peptide. The release of GnRH peptide is generally assumed to be mainly modulated according to the firing activity of GnRH neurons. However, the relationship between the firing activity and the release of GnRH peptide has been elusive. We analyzed the relationship using two lines of transgenic medaka (gnrh1:enhanced green fluorescent protein and lhb:inverse-pericam) for the combined electrophysiological and Ca2+ imaging analyses. We show that a high-frequency firing activity induced by an excitatory neurotransmitter, glutamate, strongly increases [Ca2+]i in the cell bodies of GnRH1 neurons, which should lead to stimulation of GnRH release. We examined whether this high-frequency firing actually leads to the release of endogenous GnRH1 peptide from the nerve terminals projecting to the pituitary LH cells using a whole brain-pituitary preparation of a fish generated by crossing the two types of transgenic fish. Ca2+ imaging analyses showed that local glutamate activation of GnRH1 cell bodies, but not their nerve terminals in the pituitary, induced a substantial Ca2+ response in LH cells that was abolished in the presence of a GnRH receptor antagonist, Analog M. These results suggest that such an evoked high-frequency firing activity of GnRH1 cell body stimulates the release of endogenous GnRH1 peptide from the axon terminals to the pituitary LH cells. Thus, the findings of the present study have clearly demonstrated the relationship between the firing activity of hypothalamic GnRH neurons and the release of GnRH peptide.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2017-00289DOI Listing
August 2017

Female-Specific Glucose Sensitivity of GnRH1 Neurons Leads to Sexually Dimorphic Inhibition of Reproduction in Medaka.

Endocrinology 2016 Nov 8;157(11):4318-4329. Epub 2016 Sep 8.

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.

Close interaction exists between energy-consuming reproduction and nutritional status. However, there are differences in costs and priority for reproduction among species and even between sexes, which leads to diversification of interactions between reproduction and nutritional status. Despite such diversified interactions among species and sexes, most of the analysis of the nutritional status-dependent regulation of reproduction has been limited to an endothermic vertebrate, mammalian species of either sex. Therefore, the mechanisms underlying the diversified interactions remain elusive. In the present study, we demonstrated the effects of malnutritional status on reproduction at both organismal and cellular levels in an ectothermic vertebrate, a teleost medaka of both sexes. First, we analyzed the effects of malnutrition by fasting on gonadosomatic index, number of spawned/fertilized eggs, and courtship behavior. Fasting strongly suppressed reproduction in females but, surprisingly, not in males. Next, we analyzed the effects of fasting on firing activity of hypothalamic GnRH1 neurons, which form the final common pathway for the control of reproduction. An electrophysiological analysis showed that low glucose, which is induced by fasting, directly suppresses the firing activity of GnRH1 neurons specifically in females through intracellular ATP-sensitive potassium channels and AMP-activated protein kinase pathways. Based on the fact that such suppressions occurred only in females, we conclude that nutritional status-dependent, glucose-sensing in GnRH1 neurons may contribute to the most fitted reproductive regulation for each sex.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2016-1352DOI Listing
November 2016

Evolution of the Hypothalamic-Pituitary-Gonadal Axis Regulation in Vertebrates Revealed by Knockout Medaka.

Endocrinology 2016 Oct 25;157(10):3994-4002. Epub 2016 Aug 25.

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.

Reproduction is essential for life, but its regulatory mechanism is diverse. The analysis of this diversity should lead us to understand the evolutionary process of the regulation of reproduction. In mammals, the hypothalamic-pituitary-gonadal axis plays an essential role in such regulation, and each component, hypothalamic GnRH, and pituitary gonadotropins, LH, and FSH, is indispensable. However, the common principle of the hypothalamic-pituitary-gonadal axis regulation among vertebrates remains unclear. Here, we used a teleost medaka, which is phylogenetically distant from mammals, and analyzed phenotypes of gene knockouts (KOs) for GnRH, LH, and FSH. We showed that LH release, which we previously showed to be directly triggered by GnRH, is essential for ovulation in females, because KO medaka of GnRH and LH were anovulatory in spite of the full follicular growth and normal gonadosomatic index, and spawning could be induced by a medaka LH receptor agonist. On the other hand, we showed that FSH is necessary for the folliculogenesis, because the follicular growth of FSH KO medaka was halted at the previtellogenic stage, but FSH release does not necessarily require GnRH. By comparing these results with the previous studies in mammals that both GnRH and LH are necessary for folliculogenesis, we propose a hypothesis as follows. During evolution, LH was originally specialized for ovulation, and regulation of folliculogenesis by GnRH-LH (pulsatile release) was newly acquired in mammals, which enabled fine tuning of reproduction through hypothalamus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2016-1356DOI Listing
October 2016

GnRH suppresses excitability of visual processing neurons in the optic tectum.

J Neurophysiol 2015 Nov 9;114(5):2775-84. Epub 2015 Sep 9.

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan;

Animals change their behavior in response to sensory cues in the environment as well as their physiological status. For example, it is generally accepted that their sexual behavior is modulated according to seasonal environmental changes or the individual's maturational/reproductive status, and neuropeptides have been suggested to play important roles in this process. Some behavioral modulation arises from neuropeptide modulation of sensory information processing in the central nervous system, but the neural mechanisms still remain unknown. Here we focused on the neural basis of neuropeptide modulation of visual processing in vertebrates. The terminal nerve neurons that contain gonadotropin-releasing hormone 3 (TN-GnRH3 neurons) are suggested to modulate reproductive behavior and have massive projections to the optic tectum (OT), which plays an important role in visual processing. In the present study, to examine whether GnRH3 modulates retino-tectal neurotransmission in the OT, we analyzed the effect of GnRH3 electrophysiologically and morphologically. We found that field potentials evoked by optic tract fiber stimulation, which represent retino-tectal neurotransmission, were modulated postsynaptically by GnRH3. Whole cell recording from postsynaptic neurons in the retino-tectal pathway suggested that GnRH3 activates large-conductance Ca(2+)-activated K(+) (BK) channels and thereby suppresses membrane excitability. Furthermore, our improved morphological analysis using fluorescently labeled GnRH peptides showed that GnRH receptors are localized mainly around the cell bodies of postsynaptic neurons. Our results indicate that TN-GnRH3 neurons modulate retino-tectal neurotransmission by suppressing the excitability of projection neurons in the OT, which underlies the neuromodulation of behaviorally relevant visual information processing by the neuropeptide GnRH3.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00710.2015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737410PMC
November 2015

Morphological analysis of the early development of telencephalic and diencephalic gonadotropin-releasing hormone neuronal systems in enhanced green fluorescent protein-expressing transgenic medaka lines.

J Comp Neurol 2016 Mar 3;524(4):896-913. Epub 2015 Sep 3.

Department of Biological Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.

Teleosts possess two or three paralogs of gonadotropin-releasing hormone (GnRH) genes: gnrh1, gnrh2, and gnrh3. Some species have lost the gnrh1 and/or gnrh3 genes, whereas gnrh2 has been completely conserved in the teleost species analyzed to date. In most teleosts that possess gnrh1, GnRH1 peptide is the authentic GnRH that stimulates gonadotropin release, whereas GnRH2 and GnRH3, if present, are neuromodulatory. Progenitors of GnRH1 and GnRH3 neurons originate from olfactory placodes and migrate to their destination during early development. However, because of the relatively low affinity/specificity of generally available antibodies that recognize GnRH1 or GnRH3, labeling of these neurons has only been possible using genetic manipulation. We used a model teleost, medaka, which possesses all three paralogous gnrh genes, to analyze development of forebrain GnRH neurons composed of GnRH1 and GnRH3 neurons. Here, we newly generated transgenic medaka lines that express enhanced green fluorescent protein under the control of promoters for gnrh1 or gnrh3, to detect GnRH neurons and facilitate immunohistochemical analysis of the neuronal morphology. We used a combination of immunohistochemistry and three-dimensional confocal microscopy image reconstructions to improve identification of neurites from GnRH1 or GnRH3 neuronal populations with greater precision. This led us to clearly identify the hypophysiotropic innervation of GnRH1 neurons residing in the ventral preoptic area (vPOA) from as early as 10 days post hatching. Furthermore, these analyses also revealed retinopetal projections of nonhypophysiotropic GnRH1 neurons in vPOA, prominent during early developmental stages, and multiple populations of GnRH3 neurons with different origins and migratory pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.23883DOI Listing
March 2016

Neurones in the preoptic area of the male goldfish are activated by a sex pheromone 17α,20β-dihydroxy-4-pregnen-3-one.

J Neuroendocrinol 2015 Feb;27(2):123-30

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Integrative Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.

Pheromones are interesting molecules given their ability to evoke changes in the endocrine state and behaviours of animals. In goldfish, a sex pheromone, 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P), which is released by preovulatory females, is known to trigger the elevation of luteinising hormone (LH) levels, as well as reproductive behaviour in males. Interestingly, when 11-ketotestosterone (11-KT) is implanted into adult female fish, LH levels increase in response to the pheromone at any time of the day, which is normally a male-specific response. However, the neural mechanisms underlying the male-specific information processing of 17,20β-P and its androgen dependence are yet unknown. In the present study, we focused on the preoptic area (POA), which plays important roles in the regulation of reproduction and reproductive behaviours. We mapped activity in the POA evoked by 17,20β-P exposure using the immediate-early gene c-fos. We found that a population of ventral POA neurones close to kisspeptin2 (kiss2) neurones that appear to have important roles in reproduction was activated by 17,20β-P exposure, suggesting that these activated neurones are important for the 17,20β-P response. Next, we investigated the distribution of androgen receptor (ar) in the POA and its relationship with 17,20β-P-responsive and kiss2 neurones. We found that ar is widely expressed in the ventral POA, whereas it is only expressed in approximately 10% of 17,20β-P-activated neurones. On the other hand, it is expressed in almost 90% of the kiss2 neurones. Taken together, it is possible that ar expressing neurones in the ventral POA, most of which were not labelled by c-fos in the present study, may at least partly account for androgen effects on responses to primer pheromones; the ar-positive kiss2 neurones in the ventral POA may be a candidate. These results offer a novel insight into the mechanisms underlying male-specific information processing of 17,20β-P in goldfish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jne.12243DOI Listing
February 2015

Dynamic evolution of the GnRH receptor gene family in vertebrates.

BMC Evol Biol 2014 Oct 25;14:215. Epub 2014 Oct 25.

Background: Elucidating the mechanisms underlying coevolution of ligands and receptors is an important challenge in molecular evolutionary biology. Peptide hormones and their receptors are excellent models for such efforts, given the relative ease of examining evolutionary changes in genes encoding for both molecules. Most vertebrates possess multiple genes for both the decapeptide gonadotropin releasing hormone (GnRH) and for the GnRH receptor. The evolutionary history of the receptor family, including ancestral copy number and timing of duplications and deletions, has been the subject of controversy.

Results: We report here for the first time sequences of three distinct GnRH receptor genes in salamanders (axolotls, Ambystoma mexicanum), which are orthologous to three GnRH receptors from ranid frogs. To understand the origin of these genes within the larger evolutionary context of the gene family, we performed phylogenetic analyses and probabilistic protein homology searches of GnRH receptor genes in vertebrates and their near relatives. Our analyses revealed four points that alter previous views about the evolution of the GnRH receptor gene family. First, the "mammalian" pituitary type GnRH receptor, which is the sole GnRH receptor in humans and previously presumed to be highly derived because it lacks the cytoplasmic C-terminal domain typical of most G-protein coupled receptors, is actually an ancient gene that originated in the common ancestor of jawed vertebrates (Gnathostomata). Second, unlike previous studies, we classify vertebrate GnRH receptors into five subfamilies. Third, the order of subfamily origins is the inverse of previous proposed models. Fourth, the number of GnRH receptor genes has been dynamic in vertebrates and their ancestors, with multiple duplications and losses.

Conclusion: Our results provide a novel evolutionary framework for generating hypotheses concerning the functional importance of structural characteristics of vertebrate GnRH receptors. We show that five subfamilies of vertebrate GnRH receptors evolved early in the vertebrate phylogeny, followed by several independent instances of gene loss. Chief among cases of gene loss are humans, best described as degenerate with respect to GnRH receptors because we retain only a single, ancient gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12862-014-0215-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232701PMC
October 2014

Kiss1 neurons drastically change their firing activity in accordance with the reproductive state: insights from a seasonal breeder.

Endocrinology 2014 Dec 23;155(12):4868-80. Epub 2014 Sep 23.

Department of Biological Sciences (M.H., S.K., H.S., Y.A., Y.O.), Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; and Laboratory of Fish Biology (H.A.), Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.

Kisspeptin (Kiss) neurons show drastic changes in kisspeptin expression in response to the serum sex steroid concentration in various vertebrate species. Thus, according to the reproductive states, kisspeptin neurons are suggested to modulate various neuronal activities, including the regulation of GnRH neurons in mammals. However, despite their reproductive state-dependent regulation, there is no physiological analysis of kisspeptin neurons in seasonal breeders. Here we generated the first kiss1-enhanced green fluorescent protein transgenic line of a seasonal breeder, medaka, for histological and electrophysiological analyses using a whole-brain in vitro preparation in which most synaptic connections are intact. We found histologically that Kiss1 neurons in the nucleus ventralis tuberis (NVT) projected to the preoptic area, hypothalamus, pituitary, and ventral telencephalon. Therefore, NVT Kiss1 neurons may regulate various homeostatic functions and innate behaviors. Electrophysiological analyses revealed that they show various firing patterns, including bursting. Furthermore, we found that their firings are regulated by the resting membrane potential. However, bursting was not induced from the other firing patterns with a current injection, suggesting that it requires some chronic modulations of intrinsic properties such as channel expression. Finally, we found that NVT Kiss1 neurons drastically change their neuronal activities according to the reproductive state and the estradiol levels. Taken together with the previous reports, we here conclude that the breeding condition drastically alters the Kiss1 neuron activities in both gene expression and firing activities, the latter of which is strongly related to Kiss1 release, and the Kiss1 peptides regulate the activities of various neural circuits through their axonal projections.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2014-1472DOI Listing
December 2014

Sexually dimorphic expression of the sex chromosome-linked genes cntfa and pdlim3a in the medaka brain.

Biochem Biophys Res Commun 2014 Feb 31;445(1):113-9. Epub 2014 Jan 31.

Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan. Electronic address:

In vertebrates, sex differences in the brain have been attributed to differences in gonadal hormone secretion; however, recent evidence in mammals and birds shows that sex chromosome-linked genes, independent of gonadal hormones, also mediate sex differences in the brain. In this study, we searched for genes that were differentially expressed between the sexes in the brain of a teleost fish, medaka (Oryzias latipes), and identified two sex chromosome genes with male-biased expression, cntfa (encoding ciliary neurotrophic factor a) and pdlim3a (encoding PDZ and LIM domain 3 a). These genes were found to be located 3-4 Mb from and on opposite sides of the Y chromosome-specific region containing the sex-determining gene (the medaka X and Y chromosomes are genetically identical, differing only in this region). The male-biased expression of both genes was evident prior to the onset of sexual maturity. Sex-reversed XY females, as well as wild-type XY males, had more pronounced expression of these genes than XX males and XX females, indicating that the Y allele confers higher expression than the X allele for both genes. In addition, their expression was affected to some extent by sex steroid hormones, thereby possibly serving as focal points of the crosstalk between the genetic and hormonal pathways underlying brain sex differences. Given that sex chromosomes of lower vertebrates, including teleost fish, have evolved independently in different genera or species, sex chromosome genes with sexually dimorphic expression in the brain may contribute to genus- or species-specific sex differences in a variety of traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2014.01.131DOI Listing
February 2014

A neural mechanism underlying mating preferences for familiar individuals in medaka fish.

Science 2014 Jan;343(6166):91-4

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.

Social familiarity affects mating preference among various vertebrates. Here, we show that visual contact of a potential mating partner before mating (visual familiarization) enhances female preference for the familiarized male, but not for an unfamiliarized male, in medaka fish. Terminal-nerve gonadotropin-releasing hormone 3 (TN-GnRH3) neurons, an extrahypothalamic neuromodulatory system, function as a gate for activating mating preferences based on familiarity. Basal levels of TN-GnRH3 neuronal activity suppress female receptivity for any male (default mode). Visual familiarization facilitates TN-GnRH3 neuron activity (preference mode), which correlates with female preference for the familiarized male. GnRH3 peptides, which are synthesized specifically in TN-GnRH3 neurons, are required for the mode-switching via self-facilitation. Our study demonstrates the central neural mechanisms underlying the regulation of medaka female mating preference based on visual social familiarity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1244724DOI Listing
January 2014

Neurobiological study of fish brains gives insights into the nature of gonadotropin-releasing hormone 1-3 neurons.

Front Endocrinol (Lausanne) 2013 Nov 19;4:177. Epub 2013 Nov 19.

Department of Biological Sciences, Graduate School of Science , The University of Tokyo, Tokyo , Japan.

Accumulating evidence suggests that up to three different molecular species of GnRH peptides encoded by different paralogs of gnrh genes are expressed by anatomically distinct groups of GnRH neurons in the brain of one vertebrate species. They are called gnrh1, gnrh2, and gnrh3. Recent evidence from molecular, anatomical, and physiological experiments strongly suggests that each GnRH system functions differently. Here, we review recent advancement in the functional studies of the three different GnRH neuron systems, mainly focusing on the electrophysiological analysis of the GnRH-green fluorescent protein (GFP) transgenic animals. The introduction of GFP-transgenic animals for the electrophysiological analysis of GnRH neurons greatly advanced our knowledge on their anatomy and electrophysiology, especially of gnrh1 neurons, which has long defied detailed electrophysiological analysis of single neurons because of their small size and scattered distribution. Based on the results of recent studies, we propose that different electrophysiological properties, especially the spontaneous patterns of electrical activities and their time-dependent changes, and the axonal projections characterize the different functions of GnRH1-3 neurons; GnRH1 neurons act as hypophysiotropic neuroendocrine regulators, and GnRH2 and GnRH3 neurons act as neuromodulators in wide areas of the brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fendo.2013.00177DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832842PMC
November 2013

Whole brain-pituitary in vitro preparation of the transgenic medaka (Oryzias latipes) as a tool for analyzing the differential regulatory mechanisms of LH and FSH release.

Endocrinology 2014 Feb 18;155(2):536-47. Epub 2013 Nov 18.

Department of Biological Sciences (T.K., M.A., C.K., H.A., S.K., Y.O.), Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; and Laboratory of Fish Biology (H.A.), Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan.

Two types of gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), are important pituitary hormones for sexual maturation and reproduction, and both of them are centrally regulated by gonadotropin-releasing hormone (GnRH) from the hypothalamus. In mammals, these two gonadotropins are secreted from a single type of gonadotrope. The mechanisms of differential regulation by GnRH of the release of two types of gonadotropins with different secretory profiles are still unknown. In teleosts, however, LH and FSH are secreted from separate cellular populations, unlike in mammals. This feature makes them useful for studying the regulatory mechanisms of LH and FSH secretions independently. Here, we generated transgenic medaka lines that express Ca(2+) indicator protein, inverse-pericam, specifically in the LH or FSH cells. We performed cell-type-specific Ca(2+) imaging of LH and FSH cells, respectively, using the whole brain-pituitary preparations of these transgenic fish in which all neural circuits and GnRH neuronal projection to the pituitary are kept intact. LH and FSH cells showed different Ca(2+) responses to GnRH. The results suggest differential regulation mechanisms for LH and FSH release by GnRH. Moreover, we also succeeded in detecting the effect on LH cells of endogenous GnRH peptide, which was released by electrical stimulation of the axons of GnRH1 neurons. Thus, our newly developed experimental model system using the whole brain-pituitary in vitro preparation of the transgenic medaka is a powerful tool for analyzing the differential regulatory mechanisms of the release of LH and FSH by multisynaptic neural inputs to the pituitary.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2013-1642DOI Listing
February 2014

Burst generation mediated by cholinergic input in terminal nerve-gonadotrophin releasing hormone neurones of the goldfish.

J Physiol 2013 Nov 19;591(22):5509-23. Epub 2013 Aug 19.

Y. Oka: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Peptidergic neurones play a pivotal role in the neuromodulation of widespread areas in the nervous system. Generally, it has been accepted that the peptide release from these neurones is regulated by their firing activities. The terminal nerve (TN)-gonadotrophin releasing hormone (GnRH) neurones, which are one of the well-studied peptidergic neurones in vertebrate brains, are characterised by their spontaneous regular pacemaker activities, and GnRH has been suggested to modulate the sensory responsiveness of animals. Although many peptidergic neurones are known to exhibit burst firing activities when they release the peptides, TN-GnRH neurones show spontaneous burst firing activities only infrequently. Thus, it remains to be elucidated whether the TN-GnRH neurones show burst activities and, if so, how the mode switching between the regular pacemaking and bursting modes is regulated in these neurones. In this study, we found that only a single pulse electrical stimulation of the neuropil surrounding the TN-GnRH neurones reproducibly induces transient burst activities in TN-GnRH neurones. Our combined physiological and morphological data suggest that this phenomenon occurs following slow inhibitory postsynaptic potentials mediated by cholinergic terminals surrounding the TN-GnRH neurones. We also found that the activation of muscarinic acetylcholine receptors induces persistent opening of potassium channels, resulting in a long-lasting hyperpolarisation. This long hyperpolarisation induces sustained rebound depolarisation that has been suggested to be generated by a combination of persistent voltage-gated Na(+) channels and low-voltage-activated Ca(2+) channels. These new findings suggest a novel type of cholinergic regulation of burst activities in peptidergic neurones, which should contribute to the release of neuropeptides.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/jphysiol.2013.258343DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853492PMC
November 2013

Neuroanatomical evidence that kisspeptin directly regulates isotocin and vasotocin neurons.

PLoS One 2013 25;8(4):e62776. Epub 2013 Apr 25.

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

Neuropeptide kisspeptin has been suggested to be an essential central regulator of reproduction in response to changes in serum gonadal steroid concentrations. However, in spite of wide kisspeptin receptor distribution in the brain, especially in the preoptic area and hypothalamus, the research focus has mostly been confined to the kisspeptin regulation on GnRH neurons. Here, by using medaka whose kisspeptin (kiss1) neurons have been clearly demonstrated to be regulated by sex steroids, we analyzed the anatomical distribution of kisspeptin receptors Gpr54-1 and Gpr54-2. Because the both receptors were shown to be activated by kisspeptins (Kiss1 and Kiss2), we analyzed the anatomical distribution of the both receptors by in situ hybridization. They were mainly expressed in the ventral telencephalon, preoptic area, and hypothalamus, which have been suggested to be involved in homeostatic functions including reproduction. First, we found gpr54-2 mRNA expression in nucleus preopticus pars magnocellularis and demonstrated that vasotocin and isotocin (Vasopressin and Oxytocin ortholog, respectively) neurons express gpr54-2 by dual in situ hybridization. Given that kisspeptin administration increases serum oxytocin and vasopressin concentration in mammals, the present finding are likely to be vertebrate-wide phenomenon, although direct regulation has not yet been demonstrated in mammals. We then analyzed co-expression of kisspeptin receptors in three types of GnRH neurons. It was clearly demonstrated that gpr54-expressing cells were located adjacent to GnRH1 neurons, although they were not GnRH1 neurons themselves. In contrast, there was no gpr54-expressing cell in the vicinities of neuromodulatory GnRH2 or GnRH3 neurons. From these results, we suggest that medaka kisspeptin neurons directly regulate some behavioral and neuroendocrine functions via vasotocin/isotocin neurons, whereas they do not regulate hypophysiotropic GnRH1 neurons at least in a direct manner. Thus, direct kisspeptin regulation of GnRH1 neurons proposed in mammals may not be the universal feature of vertebrate kisspeptin system in general.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062776PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636218PMC
November 2013

Structure, synthesis, and phylogeny of kisspeptin and its receptor.

Adv Exp Med Biol 2013 ;784:9-26

Department of Biological Sciences, University of Tokyo, Bunkyo, Tokyo, Japan.

The kisspeptin system is considered to be essential for successful mammalian reproduction. In addition to the Kiss1 peptide, Kiss2, the product of kiss2 (the kiss1 paralogue), has also been shown to activate kisspeptin receptor signaling pathways in nonmammalian species. Furthermore, in nonmammalian species, there are two subtypes of receptors, Gpr54-1 (known as GPR54 or Kiss1R in mammals) and Gpr54-2. Although complete understanding of the two kisspeptin-two kisspeptin receptor systems in vertebrates is not so simple, a careful examination of the phylogeny of their genes may provide insights into the functional generality and differences among the kisspeptin systems in different animal phyla. In this chapter, we first discuss the structure of kisspeptin ligands, Kiss1 and Kiss2, and their characteristics as physiologically active peptides. Then, we discuss the evolutionary traits of kiss1 and kiss2 genes and their receptor genes, gpr54-1 and gpr54-2. It appears that each animal species has selected either kiss1 or kiss2 rather randomly, leading us to propose that some of the important characteristics of kisspeptin neurons, such as steroid sensitivity and the anatomical relationship with the hypophysiotropic GnRH1 neurons, may be the keys to understanding the general functions of different kisspeptin neuronal populations throughout vertebrates. Species differences in kiss1/kiss2 may also provide insights into the evolutionary mechanisms of paralogous gene-expressing neuronal systems. Finally, because kisspeptins belong to one of the members of the RFamide peptide families, we discuss the functional divergence of kisspeptins from the other RFamide peptides, which may be explained from phylogenetic viewpoints.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4614-6199-9_2DOI Listing
August 2013

Neuropeptide RFRP inhibits the pacemaker activity of terminal nerve GnRH neurons.

J Neurophysiol 2013 May 6;109(9):2354-63. Epub 2013 Feb 6.

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.

The terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons show spontaneous pacemaker activity whose firing frequency is suggested to regulate the release of GnRH peptides and control motivation for reproductive behaviors. Previous studies of the electrophysiological properties of TN-GnRH neurons reported excitatory modulation of pacemaker activity by auto/paracrine and synaptic modulations, but inhibition of pacemaker activity has not been reported to date. Our recent study suggests that neuropeptide FF, a type of Arg-Phe-amide (RFamide) peptide expressed in TN-GnRH neurons themselves, inhibits the pacemaker activity of TN-GnRH neurons in an auto- and paracrine manner. In the present study, we examined whether RFamide-related peptides (RFRPs), which are produced in the hypothalamus, modulate the pacemaker activity of TN-GnRH neurons as candidate inhibitory synaptic modulators. Bath application of RFRP2, among the three teleost RFRPs, decreased the frequency of firing of TN-GnRH neurons. This inhibition was diminished by RF9, a potent antagonist of GPR147/74, which are candidate RFRP receptors. RFRP2 changed the conductances for Na(+) and K(+). The reversal potential for RFRP2-induced current was altered by inhibitors of the transient receptor potential canonical (TRPC) channel (La(3+) and 2-aminoethoxydiphenyl borate) and by a less selective blocker of voltage-independent K(+) channels (Ba(2+)). By comparing the current-voltage relationship in artificial cerebrospinal fluid with that under each drug, the RFRP2-induced current was suggested to consist of TRPC channel-like current and voltage-independent K(+) current. Therefore, synaptic release of RFRP2 from hypothalamic neurons is suggested to inhibit the pacemaker activity of TN-GnRH neurons by closing TRPC channels and opening voltage-independent K(+) channels. This novel pathway may negatively regulate reproductive behaviors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00712.2012DOI Listing
May 2013

Anatomical distribution of sex steroid hormone receptors in the brain of female medaka.

J Comp Neurol 2013 Jun;521(8):1760-80

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.

Estrogen and androgen play crucial roles in coordinating reproductive functions through estrogen receptors (ERs) and androgen receptors (ARs), respectively. These receptors are considered important for regulation of the hypothalamo-pituitary-gonadal (HPG) axis. Despite their biological importance, the distribution of sex steroid receptors has not been fully analyzed anatomically in the teleost brain. The teleosts have many characteristic features, which allow unique approaches toward an understanding of the regulatory mechanisms of reproductive functions. Medaka serves as a good model system for studying the mechanisms by which steroid receptor-mediated systems are regulated, because (1) their breeding conditions can be easily manipulated; (2) we can take advantage of the genome database; and 3) molecular genetic tools, such as transgenic techniques, are applicable. We analyzed the distribution of ERα, ERβ1, ERβ2, ARα, and ARβ mRNA by in situ hybridization in the brain of female medaka. We found that all subtypes of ERs and ARs were expressed in the following nuclei: the dorsal part of the ventral telencephalic area (Vd), supracommissural part of the ventral telencephalic area (Vs), postcommissural part of the ventral telencephalic area (Vp), preoptic area (POA), and nucleus ventralis tuberis (NVT). These regions are known to be involved in the regulation of sexual behavior (Vd, Vs, Vp, POA) or the HPG axis (NVT). These ER- and/or AR-expressing neurons may regulate sexual behavior or the HPG axis according to their axonal projections. Future analysis should be targeted to the neurons described in the present study to extend our understanding of the central regulatory mechanisms of reproduction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.23255DOI Listing
June 2013

Female-specific target sites for both oestrogen and androgen in the teleost brain.

Proc Biol Sci 2012 Dec 17;279(1749):5014-23. Epub 2012 Oct 17.

Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.

To dissect the molecular and cellular basis of sexual differentiation of the teleost brain, which maintains marked sexual plasticity throughout life, we examined sex differences in neural expression of all subtypes of nuclear oestrogen and androgen receptors (ER and AR) in medaka. All receptors were differentially expressed between the sexes in specific nuclei in the forebrain. The most pronounced sex differences were found in several nuclei in the ventral telencephalic and preoptic areas, where ER and AR expression were prominent in females but almost completely absent in males, indicating that these nuclei represent female-specific target sites for both oestrogen and androgen in the brain. Subsequent analyses revealed that the female-specific expression of ER and AR is not under the direct control of sex-linked genes but is instead regulated positively by oestrogen and negatively by androgen in a transient and reversible manner. Taken together, the present study demonstrates that sex-specific target sites for both oestrogen and androgen occur in the brain as a result of the activational effects of gonadal steroids. The consequent sex-specific but reversible steroid sensitivity of the adult brain probably contributes substantially to the process of sexual differentiation and the persistent sexual plasticity of the teleost brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1098/rspb.2012.2011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497244PMC
December 2012

Evolutionary Insights into the Steroid Sensitive kiss1 and kiss2 Neurons in the Vertebrate Brain.

Front Endocrinol (Lausanne) 2012 22;3:28. Epub 2012 Feb 22.

Department of Biological Science, Graduate School of Sciences, The University of Tokyo Tokyo, Japan.

Kisspeptin was originally found as a peptide product of Kiss1 gene and is now supposed to be an essential central regulator of reproduction in mammals. However, there is now a growing body of evidence to suggest that kiss2, the paralogous gene for kiss1, evolved in parallel during vertebrate lineage, and the kiss2 product also activates the GPR54 (kisspeptin receptor) signaling pathways. Therefore, it is now widely accepted that both kiss1 and kiss2 are the kisspeptin genes. Interestingly, either kiss1 or kiss2 or both have been lost during evolution in many vertebrate species, and the functional significance of kiss1 or kiss2 for the central regulation of reproduction is suggested to vary according to the species. Here, we argue that the steroid sensitivity of the kiss1 or kiss2 neurons has been well conserved during evolution among tetrapods and teleosts, and thus it may be the key to understanding the functional homologies of certain populations of kisspeptin (kiss1 or kiss2) neurons among different species of vertebrates. In the present review, we will first introduce recent advances in the study of steroid sensitive kiss1 and kiss2 systems in vertebrates and effects of peptide administrations in vivo. By comparing the similarities and differences between kiss1 and kiss2 of neuronal localization and sensitivity to gonadal steroids in various tetrapods and teleosts, we discuss the evolution of kisspeptin neuronal systems after gene duplication of ancestral kisspeptin genes to give rise to kiss1 and kiss2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fendo.2012.00028DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356069PMC
August 2012

Time-of-day-dependent changes in GnRH1 neuronal activities and gonadotropin mRNA expression in a daily spawning fish, medaka.

Endocrinology 2012 Jul 27;153(7):3394-404. Epub 2012 Apr 27.

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

GnRH neurons in the preoptic area and hypothalamus control the secretion of GnRH and form the final common pathway for hypothalamic-pituitary-gonadal axis regulation in vertebrates. Temporal regulation of reproduction by coordinating endogenous physiological conditions and behaviors is important for successful reproduction. Here, we examined the temporal regulation of reproduction by measuring time-of-day-dependent changes in the electrical activity of GnRH1 neurons and in levels of expression of pituitary gonadotropin mRNA using a daily spawning teleost, medaka (Oryzias latipes). First, we performed on-cell patch-clamp recordings from GnRH1 neurons that directly project to the pituitary, using gnrh1-green fluorescent protein transgenic medaka. The spontaneous firing activity of GnRH1 neurons showed time-of-day-dependent changes: overall, the firing activity in the afternoon was higher than in the morning. Next, we examined the daily changes in the pituitary gonadotropin transcription level. The expression levels of lhb and fshb mRNA also showed changes related to time of day, peaking during the lights-off period. Finally, we analyzed effects of GnRH on the pituitary. We demonstrated that incubation of isolated pituitary with GnRH increases lhb mRNA transcription several hours after GnRH stimulation, unlike the well-known immediate LH releasing effect of GnRH. From these results, we propose a working hypothesis concerning the temporal regulation of the ovulatory cycle in the brain and pituitary of female medaka.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2011-2022DOI Listing
July 2012