Publications by authors named "Yohjans Nunez-Gomez"

2 Publications

  • Page 1 of 1

Deep brain stimulation of midbrain locomotor circuits in the freely moving pig.

Brain Stimul 2021 Feb 27;14(3):467-476. Epub 2021 Feb 27.

Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA. Electronic address:

Background: Deep brain stimulation (DBS) of the mesencephalic locomotor region (MLR) has been studied as a therapeutic target in rodent models of stroke, parkinsonism, and spinal cord injury. Clinical DBS trials have targeted the closely related pedunculopontine nucleus in patients with Parkinson's disease as a therapy for gait dysfunction, with mixed reported outcomes. Recent studies suggest that optimizing the MLR target could improve its effectiveness.

Objective: We sought to determine if stereotaxic targeting and DBS in the midbrain of the pig, in a region anatomically similar to that previously identified as the MLR in other species, could initiate and modulate ongoing locomotion, as a step towards generating a large animal neuromodulation model of gait.

Methods: We implanted Medtronic 3389 electrodes into putative MLR structures in Yucatan micropigs to characterize the locomotor effects of acute DBS in this region, using EMG recordings, joint kinematics, and speed measurements on a manual treadmill.

Results: MLR DBS initiated and augmented locomotion in freely moving micropigs. Effective locomotor sites centered around the cuneiform nucleus and stimulation frequency controlled locomotor speed and stepping frequency. Off-target stimulation evoked defensive and aversive behaviors that precluded locomotion in the animals.

Conclusion: Pigs appear to have an MLR and can be used to model neuromodulation of this gait-promoting center. These results indicate that the pig is a useful model to guide future clinical studies for optimizing MLR DBS in cases of gait deficiencies associated with such conditions as Parkinson's disease, spinal cord injury, or stroke.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brs.2021.02.017DOI Listing
February 2021

Population Averaged Stereotaxic T2w MRI Brain Template for the Adult Yucatan Micropig.

Front Neuroanat 2020 13;14:599701. Epub 2020 Nov 13.

Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States.

Population averaged brain templates are an essential tool for imaging-based neuroscience research, providing investigators with information about the expected size and morphology of brain structures and the spatial relationships between them, within a demographic cross-section. This allows for a standardized comparison of neuroimaging data between subjects and provides neuroimaging software with a probabilistic framework upon which further processing and analysis can be based. Many different templates have been created to represent specific study populations and made publicly available for human and animal research. An increasingly studied animal model in the neurosciences that still lacks appropriate brain templates is the adult Yucatan micropig. In particular, T2-weighted templates are absent in this species as a whole. To address this need and provide a tool for neuroscientists wishing to pursue neuroimaging research in the adult micropig, we present the construction of population averaged ( = 16) T2-weighted MRI brain template for the adult Yucatan micropig. Additionally, we present initial analysis of T1-weighted ( = 3), and diffusion-weighted ( = 3) images through multimodal registration of these contrasts to our T2 template. The strategies used here may also be generalized to create similar templates for other study populations or species in need of template construction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnana.2020.599701DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691581PMC
November 2020