Publications by authors named "Yoghatama Cindya Zanzer"

4 Publications

  • Page 1 of 1

Perspective: Leveraging the Gut Microbiota to Predict Personalized Responses to Dietary, Prebiotic, and Probiotic Interventions.

Adv Nutr 2022 Jul 1. Epub 2022 Jul 1.

International Life Sciences Institute, European Branch, Brussels, Belgium.

Humans often show variable responses to dietary, prebiotic, and probiotic interventions. Emerging evidence indicates that the gut microbiota is a key determinant for this population heterogeneity. Here, we provide an overview of some of the major computational and experimental tools being applied to critical questions of microbiota-mediated personalized nutrition and health. First, we discuss the latest advances in in silico modeling of the microbiota-nutrition-health axis, including the application of statistical, mechanistic, and hybrid artificial intelligence models. Second, we address high-throughput in vitro techniques for assessing inter-individual heterogeneity, from ex vivo batch culturing of stool and continuous culturing in anaerobic bioreactors, to more sophisticated organ-on-a-chip models that integrate both host and microbial compartments. Third, we explore in vivo approaches for better understanding personalized, microbiota-mediated responses to diet, prebiotics, and probiotics, from non-human animal models and human observational studies, to human feeding trials and crossover interventions. We highlight examples of existing, consumer-facing precision nutrition platforms that are currently leveraging the gut microbiota. Furthermore, we discuss how the integration of a broader set of the tools and techniques described in this piece can generate the data necessary to support a greater diversity of precision nutrition strategies. Finally, we present a vision of a precision nutrition and healthcare future, which leverages the gut microbiota to design effective, individual-specific interventions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/advances/nmac075DOI Listing
July 2022

Postprandial Responses of Serum Bile Acids in Healthy Humans after Ingestion of Turmeric before Medium/High-Fat Breakfasts.

Mol Nutr Food Res 2019 11 22;63(21):e1900672. Epub 2019 Aug 22.

Food for Health Science Centre, Kemicentrum, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden.

Scope: Bile acids (BAs) are known to regulate a number of metabolic activities in the body. However, very little is known about how BAs are affected by diet. This study aims to investigate whether a single dose of turmeric-based beverage (TUR) before ingestion of medium- (MF) or high-fat (HF) breakfasts would improve the BA profile in healthy subjects.

Methods And Results: Twelve healthy subjects are assigned to a randomized crossover single-blind study. The subjects receive isocaloric MF or HF breakfasts after a drink containing flavored water with or without an extract of turmeric with at least 1-week wash-out period between the treatments. Postprandial BAs are measured using protein precipitation followed by ultra-high-performance liquid chromatography-mass spectrometry analysis. The concentration of BAs is generally higher after HF than MF breakfasts. Ingestion of TUR before MF breakfast increases the serum concentrations of free and conjugated forms of cholic (CA) and ursodeoxycholic acids (UDCA), as well as the concentrations of chenodeoxycholic acid (CDCA) and its taurine-conjugated forms. However, the concentration of conjugated forms of deoxycholic acid (DCA) decreases when TUR is taken before HF breakfast.

Conclusion: TUR ingestion before MF and HF breakfasts improve BA profiles and may therefore have potential health-promoting effects on BA metabolism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.201900672DOI Listing
November 2019

Difficulties in Translating Appetite Sensations Effect of Turmeric-Based Beverage When Given Prior to Isoenergetic Medium- or High-Fat Meals in Healthy Subjects.

Nutrients 2019 Mar 29;11(4). Epub 2019 Mar 29.

Food for Health Science Centre, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.

The established effect of turmeric and its curcuminoids on appetite sensations was previously shown to be mediated by gut hormones release. In in vitro and preclinical studies, curcumin was shown to induce GLP-1 secretion and improve postprandial glycemia. In humans, consumption of 220 mL turmeric-based beverage (TUR, containing 185 mg gallic acid equivalents (GAE)) prior to white wheat bread (WWB, 50 g available carbohydrate) reduced early postprandial glucose levels and induced peptide tyrosine⁻tyrosine (PYY) release, as well as lowered 'desire to eat' and 'prospective consumption' in a postprandial setting, compared to control. In the present study, 12 healthy participants (5 men, 7 women) were admitted. An identical beverage was given and consumed prior to isoenergetic (423 kcal) medium-fat (MF) or high-fat (HF) meals. Appetite sensations including perceived 'hunger', 'desire to eat', 'satiety', 'fullness', 'prospective consumption', and 'thirst' were measured using visual analogue scales. MF induced 18% ( = 0.039) higher 'satiety' compared to HF. TUR consumption prior to either MF or HF did not modulate the perceived appetite sensations. Whether macronutrient-induced appetite sensations override the actual turmeric effects warrants further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu11040736DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520817PMC
March 2019

Black pepper-based beverage induced appetite-suppressing effects without altering postprandial glycaemia, gut and thyroid hormones or gastrointestinal well-being: a randomized crossover study in healthy subjects.

Food Funct 2018 May;9(5):2774-2786

Food for Health Science Centre, Lund University, P.O. Box 124, Lund SE-22100, Sweden.

Pleiotropic effects of spices on health, particularly on glucose metabolism and energy regulation, deserve further clinical investigation into their efficacy. The aim of the current study was to evaluate whether consumption of a black pepper-based beverage (BPB) preload containing 20 mg gallic acid equivalent (GAE) would exert any effect on postprandial glycaemia, appetite sensations, gut hormones, thyroid function, and gastrointestinal well-being after a white wheat bread (WWB) challenge meal containing 50 g available carbohydrates (CHO) compared to a control beverage. Sixteen healthy subjects (10 men; 6 women; 26 ± 0.9 years; BMI 22.93 ± 0.53 kg m-2) completed a randomized, crossover intervention study. The BPB's bioactive compounds were characterized using ultra high-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer with an electrospray ionization source (UHPLC-DAD-ESI-QTOF-MS). Nine compounds tentatively identified in BPB include: dihydroxybenzoic acid hexoside-pentoside, decaffeoyl-acteoside, cynaroside A, apigenin 6,8-di-C-hexoside, luteolin 6-C-hexoside-8-C-rhamnoside, apigenin 8-C-hexoside-C-deoxyhexoside, kaempferol 3-rhamnoside-4'-xyloside, apigenin 7-neohesperidoside, and apigenin-8-C-arabinopyranoside-2''-rhamnoside. Blood glucose and serum insulin responses, insulin sensitivity and β-cell function were not affected during the acute intervention with BPB. Neither were effects on gastrointestinal well-being observed after BPB. However, BPB modulated overall acute appetite by lowering 'hunger', 'desire to eat', and 'prospective consumption', and increasing 'satiety' and 'fullness'. In contrast, there were no changes in gut (peptide tyrosine-tyrosine [PYY] and glucagon-like peptide-1 [GLP-1]) and thyroid (triiodothyronine [T3] and thyroxine [T4]) hormones after BPB compared to the control beverage. In conclusion, inclusion of BPB prior to the WWB challenge meal might be beneficial for appetite modulation, but we did not find supporting evidence in glycaemia, gut and thyroid hormones. Further studies are needed to elucidate the mechanisms of appetite-reducing pungent spices, such as black pepper.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7fo01715dDOI Listing
May 2018
-->