Publications by authors named "Yicheng Ye"

7 Publications

  • Page 1 of 1

Control the Neural Stem Cell Fate with Biohybrid Piezoelectrical Magnetite Micromotors.

Nano Lett 2021 Apr 13;21(8):3518-3526. Epub 2021 Apr 13.

School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

Inducing neural stem cells to differentiate and replace degenerated functional neurons represents the most promising approach for neural degenerative diseases including Parkinson's disease, Alzheimer's disease, etc. While diverse strategies have been proposed in recent years, most of these are hindered due to uncontrollable cell fate and device invasiveness. Here, we report a minimally invasive micromotor platform with biodegradable helical () as the framework and superparamagnetic FeO nanoparticles/piezoelectric BaTiO nanoparticles as the built-in function units. With a low-strength rotational magnetic field, this integrated micromotor system can perform precise navigation in biofluid and achieve single-neural stem cell targeting. Remarkably, by tuning ultrasound intensity, thus the local electrical output by the motor, directed differentiation of the neural stem cell into astrocytes, functional neurons (dopamine neurons, cholinergic neurons), and oligodendrocytes, can be achieved. This micromotor platform can serve as a highly controllable wireless tool for bioelectronics and neuronal regenerative therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c00290DOI Listing
April 2021

Bone-Targeting Prodrug Mesoporous Silica-Based Nanoreactor with Reactive Oxygen Species Burst for Enhanced Chemotherapy.

ACS Appl Mater Interfaces 2020 Aug 21;12(31):34630-34642. Epub 2020 Jul 21.

School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China.

Cancer remains a primary threat to human lives. Recently, amplification of tumor-associated reactive oxygen species (ROS) has been used as a boosting strategy to improve tumor therapy. Here, we report on a bone-targeting prodrug mesoporous silica-based nanoreactor for combined photodynamic therapy (PDT) and enhanced chemotherapy for osteosarcoma. Because of surface modification of a bone-targeting biphosphate moiety and the enhanced permeability and retention effect, the formed nanoreactor shows efficient accumulation in osteosarcoma and exhibits long-term retention in the tumor microenvironment. Upon laser irradiation, the loaded photosensitizer chlorin e6 (Ce6) produces in situ ROS, which not only works for PDT but also functions as a trigger for controlled release of doxorubicin (DOX) and doxycycline (DOXY) from the prodrugs based on a thioketal () linkage. The released DOXY further promotes ROS production, thus perpetuating subsequent DOX/DOXY release and ROS burst. The ROS amplification induces long-term high oxidative stress, which increases the sensitivity of the osteosarcoma to chemotherapy, therefore resulting in enhanced tumor cell inhibition and apoptosis. The as-developed nanoreactor with combined PDT and enhanced chemotherapy based on ROS amplification shows significant promise as a potential platform for cancer treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c08992DOI Listing
August 2020

Hyperthermia-Triggered On-Demand Biomimetic Nanocarriers for Synergetic Photothermal and Chemotherapy.

Adv Sci (Weinh) 2020 Jun 20;7(11):1903642. Epub 2020 Apr 20.

School of Pharmaceutical Science Guangdong Provincial Key Laboratory of New Drug Screening Southern Medical University Guangzhou 510515 China.

Nanoparticle-based drug delivery systems with low side effects and enhanced efficacy hold great potential in the treatment of various malignancies, in particular cancer; however, they are still challenging to attain. Herein, an anticancer drug delivery system based on a cisplatin (CDDP) containing nanogel, functionalized with photothermal gold nanorods (GNRs) which are electrostatically decorated with doxorubicin (DOX) is reported. The nanoparticles are formed via the crosslinking reaction of hyaluronic acid with the ancillary anticarcinogen CDDP in the presence of DOX-decorated GNRs. The nanogel is furthermore cloaked with a cancer cell membrane, and the resulting biomimetic nanocarrier (4T1-HANG-GNR-DC) shows efficient accumulation by homologous tumor targeting and possesses long-time retention in the tumor microenvironment. Upon near-infrared (NIR) laser irradiation, in situ photothermal therapy is conducted which further induces hyperthermia-triggered on-demand drug release from the nanogel reservoir to achieve a synergistic photothermal/chemo-therapy. The as-developed biomimetic nanocarriers, with their dual-drug delivery features, homotypic tumor targeting and synergetic photothermal/chemo-therapy, show much promise as a potential platform for cancer treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.201903642DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284223PMC
June 2020

Experimental Research on Shear Failure Monitoring of Composite Rocks Using Piezoelectric Active Sensing Approach.

Sensors (Basel) 2020 Mar 3;20(5). Epub 2020 Mar 3.

Resources and Environmental Engineering Institute, Wuhan University of Science and Technology, Wuhan 430081, China.

Underground space engineering structures are generally subject to extensive damages and significant deformation. Given that composite rocks are prone to shear failure, which cannot be accurately monitored, the piezoelectric active sensing method and wavelet packet analysis method were employed to conduct a shear failure monitoring test on composite rocks in this study. For the experiment, specimens were prepared for the simulation of the composite rocks using cement. Two pairs of piezoelectric smart aggregates (SAs) were embedded in the composite specimens. When the specimens were tested using the direct shear apparatus, an active sensing-based monitoring test was conducted using the embedded SAs. Moreover, a wavelet packet analysis was conducted to compute the energy of the monitoring signal; thus allowing for the determination of the shear damage index of the composite specimens and the quantitative characterization of the shear failure process. The results indicated that upon the shear failure of the composite specimens, the amplitudes and peak values of the monitoring signals decreased significantly, and the shear failure and damage indices of the composite specimens increased abruptly and approached a value of 1. The feasibility and reliability of the piezoelectric active sensing method, with respect to the monitoring of the shear failure of composite rocks, was therefore experimentally demonstrated in this study.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/s20051376DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085608PMC
March 2020

Fuzzy risk prediction of roof fall and rib spalling: based on FFTA-DFCE and risk matrix methods.

Environ Sci Pollut Res Int 2020 Mar 6;27(8):8535-8547. Epub 2020 Jan 6.

School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, People's Republic of China.

The working conditions of underground mining are complex and variable, and roof fall and rib spalling are one of the main types of accidents that can occur. Building an integrated model to evaluate the risk of roof fall and rib spalling is the foundation of mine safety. On the basis of the inherent attributes of event risk, the fuzzy evaluation set and probability of basic events are obtained by using the fuzzy fault tree analysis method based on the sample's fuzzy information. Subsequently, the likelihood of roof fall and rib spalling is determined. Consequence severity data are obtained by using the dynamic fuzzy logic method, and the consequence severity grade of roof fall and rib spalling is evaluated via the dynamic fuzzy comprehensive evaluation method. The event risk level is determined by the risk matrix method. Roof fall and rib spalling in a non-coal mine is analyzed and evaluated by using fuzzy fault tree analysis and dynamic fuzzy comprehensive evaluation. The weak links in the operation of an underground mine are identified by fuzzy fault tree analysis as "mining process, roof management, support and reinforcement." Then, the risk development trend is determined by the dynamic fuzzy comprehensive evaluation method. The risk matrix method is integrated to determine whether the risk level of the mine is "high risk, unacceptable" and expected to deteriorate in the future. The results show the validity and feasibility of the risk analysis and prediction model for roof fall and rib spalling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-06972-4DOI Listing
March 2020

Fabrication of Self-Propelled Micro- and Nanomotors Based on Janus Structures.

Chemistry 2019 Jul 21;25(37):8663-8680. Epub 2019 May 21.

School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug, Screening Southern Medical University, Guangzhou, 510515, P.R. China.

Delicate molecular and biological motors are tiny machines capable of achieving numerous vital tasks in biological processes. To gain a deeper understanding of their mechanism of motion, researchers from multiple backgrounds have designed and fabricated artificial micro- and nanomotors. These nano-/microscale motors can self-propel in solution by exploiting different sources of energy; thus showing tremendous potential in widespread applications. As one of the most common motor systems, Janus motors possess unique asymmetric structures and integrate different functional materials onto two sides. This review mainly focuses on the fabrication of different types of micro- and nanomotors based on Janus structures. Furthermore, some challenges still exist in the implementation of Janus motors in the biomedical field. With such common goals in mind, it is expected that the elaborate and multifunctional design of Janus motors will overcome their challenges in the near future.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201900840DOI Listing
July 2019

Inhibition of Phosphodiesterase 4 by FCPR03 Alleviates Lipopolysaccharide-Induced Depressive-Like Behaviors in Mice: Involvement of p38 and JNK Signaling Pathways.

Int J Mol Sci 2018 Feb 8;19(2). Epub 2018 Feb 8.

Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.

Inflammatory responses induced by peripheral administration of lipopolysaccharide (LPS) triggers depressive-like behavioral syndrome in rodents. Inhibition of phosphodiesterase 4 (PDE4) produces a robust anti-inflammatory effect in inflammatory cells. Unfortunately, archetypal PDE4 inhibitors cause intolerable gastrointestinal side-effects, such as vomiting and nausea. -isopropyl-3-(cyclopropylmethoxy)-4-difluoromethoxy benzamide (FCPR03) is a novel, selective PDE4 inhibitor with little, or no, emetic potency. Our previous studies show that FCPR03 is effective in attenuating neuroinflammation in mice treated with LPS. However, whether FCPR03 could exert antidepressant-like effect induced by LPS is largely unknown. In the present study, mice injected intraperitoneally (i.p.) with LPS was established as an in vivo animal model of depression. The antidepressant-like activities of FCPR03 were evaluated using a tail suspension test, forced swimming test, and sucrose preference test. We demonstrated that administration of FCPR03 (1 mg/kg) produced antidepressant-like effects in mice challenged by LPS, as evidenced by decreases in the duration of immobility in the forced swim and tail suspension tests, while no significant changes in locomotor activity were observed. FCPR03 also increased sucrose preference in mice treated with LPS. In addition, treatment with FCPR03 abolished the downregulation of brain-derived neurotrophic factor induced by LPS and decreased the level of corticosterone in plasma. Meanwhile, periphery immune challenge by LPS induced enhanced phosphorylation of p38-mitogen activated protein kinase (p38) and c-Jun N-terminal kinase (JNK) in both the cerebral cortex and hippocampus in mice. Interestingly, treatment with FCPR03 significantly blocked the role of LPS and reduced the levels of phosphorylated p38 and JNK. Collectively, these results indicate that FCPR03 shows antidepressant-like effects in mice challenged by LPS, and the p38/JNK signaling pathway is possibly involved in this process. Our findings suggest that FCPR03 is a potential compound for the prevention or treatment of depression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms19020513DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855735PMC
February 2018