Publications by authors named "Yi-Ning Wen"

3 Publications

  • Page 1 of 1

Synthesis, Anti-Varicella-Zoster Virus and Anti-Cytomegalovirus Activity of 4,5-Disubstituted 1,2,3-(1H)-Triazoles.

Med Chem 2019 ;15(7):801-812

School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Background: Clinical drugs for herpesvirus exhibit high toxicity and suffer from significant drug resistance. The development of new, effective, and safe anti-herpesvirus agents with different mechanisms of action is greatly required.

Objective: Novel inhibitors against herpesvirus with different mechanisms of action from that of clinical drugs.

Methods: A series of novel 5-(benzylamino)-1H-1,2,3-triazole-4-carboxamides were efficiently synthesized and EC50 values against Human Cytomegalovirus (HCMV), Varicella-Zoster Virus (VZV) and Herpes Simplex Virus (HSV) were evaluated in vitro.

Results: Some compounds present antiviral activity. Compounds 5s and 5t are potent against both HCMV and VZV. Compounds 5m, 5n, 5s, and 5t show similar EC50 values against both TK+ and TK- VZV strains.

Conclusion: 5-(Benzylamino)-1H-1, 2,3-triazole-4-carboxamides are active against herpesviruses and their activity is remarkably affected by the nature and the position of substituents in the benzene ring. The results indicate that these derivatives are independent of the viral thymidine kinase (TK) for activation, which is indispensable for current drugs. Their mechanisms of action may differ from those of the clinic anti-herpesvirus drugs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573406414666181109095239DOI Listing
December 2019

Synthesis and Ativiral Activity of 5-(Benzylthio)-4-carbamyl-1,2,3-triazoles Against Human Cytomegalovirus (CMV) and Varicella-zoster Virus (VZV).

Med Chem 2017 ;13(5):453-464

Department of Applied Chemistry and Pharmaceutics, Beijing Institute of Technology, Beijing 100081, China.

Background: All of the clinical drugs for herpesvirus infections exhibit high toxicity and suffer from significant drug-resistantance. There is a great need for the development of new, effective, and safe anti-herpesvirus agents with different mechanisms of action.

Methods: A series of novel 5-(benzylthio)-1H-1,2,3-triazole-4-carboxamides were efficiently synthesized and EC50 values against human cytomegalovirus (HCMV), varicella-zoster virus (VZV) and herpes simplex virus (HSV) were evaluated in vitro.

Results: Some compounds possess antiviral activity. Compound 7f exhibits promising inhibitory activity against both HCMV and VZV. Our results also indicate that these derivatives are independent of the viral thymidine kinase (TK) for activation, which is indispensable for current drugs.

Conclusion: 4,5-Bissubstiuted triazoles are active against herpesviruses and the nature and the position of substituents in the benzene ring remarkably affect their activity, such as bromo, cyano and cyanovynil substituents. Future studies should be undertaken to investigate the mechanism of action of these compounds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573406413666170307165236DOI Listing
September 2017

Synthesis and Bioactivity of Novel Trisubstituted Triazole Nucleosides.

Nucleosides Nucleotides Nucleic Acids 2016 8;35(3):147-60. Epub 2016 Feb 8.

a Department of Applied Chemistry and Pharmaceutics , Beijing Institute of Technology , Beijing 100081 , China.

A series of novel trisubstituted 1,2,3-triazole purine nucleosides were efficiently synthesized via Huisgen 1,3-dipolar cycloaddition in good yields. Bioactivity against cytomegalovirus (CMV) and varicella-zoster virus (VZV) in human embryonic lung cell cultures was evaluated and all compounds show low antiviral activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15257770.2015.1115523DOI Listing
November 2016
-->