Publications by authors named "Yee Ho Chai"

2 Publications

  • Page 1 of 1

Particle swarm optimization and global sensitivity analysis for catalytic co-pyrolysis of Chlorella vulgaris and plastic waste mixtures.

Bioresour Technol 2021 Jun 23;329:124874. Epub 2021 Feb 23.

Energy and Environment Institute, University of Hull, Cottingham Road, Kingston upon Hull HU6 7RX, United Kingdom; B3 Challenge Group, Department of Chemical Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom. Electronic address:

This study investigated on the co-pyrolysis of microalgae Chlorella vulgaris and high-density polyethylene (HDPE) waste mixtures which was performed with three types of catalysts, namely limestone (LS), HZSM-5 zeolite, and novel bi-functional LS/HZSM-5/LS. Kissinger-Kai (K-K) model-free method was coupled with Particle Swarm Optimization (PSO) model-fitting method using the thermogravimetric experimental data. A global sensitivity analysis was carried out using Latin Hypercube Sampling and rank transformation to assess the extent of impact of the input kinetic parameters on the output results. Furthermore, a thermodynamic analysis was performed to obtain parameters such as enthalpy change (ΔH), Gibb's free energy (ΔG), and entropy change (ΔS). The activation energy (E) of the microalgae Chlorella vulgaris and HDPE binary mixture were found to be lower upon the addition of catalysts. Among the catalyst used, bi-functional LS/HZSM-5 catalyst exhibited the lowest E (83.59 kJ/mol) and ΔH (78 kJ/mol) as compared to LS and HZSM-5 catalysts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.124874DOI Listing
June 2021

Recent advances in downstream processing of microalgae lipid recovery for biofuel production.

Bioresour Technol 2020 May 11;304:122996. Epub 2020 Feb 11.

Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan. Electronic address:

The world energy system faces two major challenges: the requirement for more energy and less carbon. It is important to address biofuels production as an alternative to the usage of fossil fuel by utilizing microalgae as the potential feedstock. Yet, the commercialization of microalgae remains contentious caused by factors relating to the life cycle assessment and feasibility of microalgae-based biofuels. This present review starts with an introduction to the benefits of microalgae, followed by intensive elaboration on microalgae cultivation parameters. Subsequently, the fundamental principle along with the advantages and disadvantages of various pretreatment techniques of microalgae were reviewed. In addition, the conventional and recent advances in lipid extraction techniques from microalgae were comprehensively evaluated. Comparative analysis regard to the gaps from previous studies was discussed point-by-point in each section. The effort presented in this review will provide an insight for future researches dealing with microalgae-biofuel production on downstream processing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.122996DOI Listing
May 2020
-->