Publications by authors named "Yazhi Sun"

2 Publications

  • Page 1 of 1

Bioprinting of dual ECM scaffolds encapsulating limbal stem/progenitor cells in active and quiescent statuses.

Biofabrication 2021 08 13;13(4). Epub 2021 Aug 13.

Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, United States of America.

Limbal stem cell deficiency and corneal disorders are among the top global threats for human vision. Emerging therapies that integrate stem cell transplantation with engineered hydrogel scaffolds for biological and mechanical support are becoming a rising trend in the field. However, methods for high-throughput fabrication of hydrogel scaffolds, as well as knowledge of the interaction between limbal stem/progenitor cells (LSCs) and the surrounding extracellular matrix (ECM) are still much needed. Here, we employed digital light processing (DLP)-based bioprinting to fabricate hydrogel scaffolds encapsulating primary LSCs and studied the ECM-dependent LSC phenotypes. The DLP-based bioprinting with gelatin methacrylate (GelMA) or hyaluronic acid glycidyl methacrylate (HAGM) generated microscale hydrogel scaffolds that could support the viability of the encapsulated primary rabbit LSCs (rbLSCs) in culture. Immunocytochemistry and transcriptional analysis showed that the encapsulated rbLSCs remained active in GelMA-based scaffolds while exhibited quiescence in the HAGM-based scaffolds. The primary human LSCs encapsulated within bioprinted scaffolds showed consistent ECM-dependent active/quiescent statuses. Based on these results, we have developed a novel bioprinted dual ECM 'Yin-Yang' model encapsulating LSCs to support both active and quiescent statues. Our findings provide valuable insights towards stem cell therapies and regenerative medicine for corneal reconstruction.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
August 2021

Molecular Pathway Analysis Indicates a Distinct Metabolic Phenotype in Women With Right-Sided Colon Cancer.

Transl Oncol 2020 Jan 21;13(1):42-56. Epub 2019 Nov 21.

Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT USA. Electronic address:

Colon cancer is the third most commonly diagnosed cancer in the United States. Recent reports have shown that the location of the primary tumor is of clinical importance. Patients with right-sided colon cancers (RCCs) (tumors arising between the cecum and proximal transverse colon) have poorer clinical outcomes than those with left-sided colon cancers (LCCs) (tumors arising between the distal transverse colon and sigmoid colon, excluding the rectum). Interestingly, women have a lower incidence of colon cancer than men, but have a higher propensity for RCC. The reason for this difference is not known; however, identification of sex-specific differences in gene expression by tumor anatomical location in the colon could provide further insight. Moreover, it could reveal important predictive markers for response to various treatments. This study provides a comprehensive bioinformatic analysis of various genes and molecular pathways that correlated with sex and anatomical location of colon cancers using four publicly available annotated data sets housed in the National Center for Biotechnology Information's Gene Expression Omnibus. We identified differentially expressed genes in tumor tissues from women with RCC, which showed attenuated energy and nutrient metabolism when compared with women with LCC. Specifically, we showed the downregulation of 5' AMP-activated protein kinase alpha subunit (AMPK╬▒) and anti-tumor immune responses in women with RCC. This difference was not seen when comparing tumor tissues from men with RCC to men with LCC. Therefore, women with RCC may have a specific metabolic and immune phenotype which accounts for differences in prognosis and treatment response.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
January 2020