Publications by authors named "Yaojia Ma"

1 Publications

  • Page 1 of 1

Acquisition of mesenchymal-like phenotypes and overproduction of angiogenic factors in lenvatinib-resistant hepatocellular carcinoma cells.

Biochem Biophys Res Commun 2021 Apr 3;549:171-178. Epub 2021 Mar 3.

Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan.

Lenvatinib is one of the first-line drugs for patients with advanced hepatocellular carcinoma (HCC) and widely used around the world. However, the mechanisms underlying resistance to lenvatinib remain unclear. In this study, we conducted characteristic analyses of lenvatinib-resistant HCC cells. Lenvatinib-resistant HCC cell lines were established by exposure to serially escalated doses of lenvatinib over 2 months. The biological characteristics of these cells were examined by in vitro assays. To investigate the cytokine profile of lenvatinib-resistant HCC cells, the supernatant derived from lenvatinib-resistant Huh7 cells was subjected to nitrocellulose membrane-based sandwich immunoassay. Both activation of the MAPK/MEK/ERK signaling pathway and upregulation of epithelial mesenchymal transition markers were observed in lenvatinib-resistant cells. Concordant with these findings, proliferation and invasion abilities were enhanced in these cells compared with control cells. Screening of a cytokine array spotted with 105 different antibodies to human cytokines enabled us to identify 16 upregulated cytokines in lenvatinib-resistant cells. Among them, 3 angiogenic cytokines: vascular endothelial growth factor (VEGF), platelet-derived growth factor-AA (PDGF-AA), and angiogenin, were increased significantly. Conditioned medium from lenvatinib-resistant cells accelerated tube formation of human umbilical vein cells. In conclusion, lenvatinib-resistant HCC cells were characterized by enhanced proliferation and invasion abilities. These findings might contribute to the establishment of new combination therapies with lenvatinib.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2021.02.097DOI Listing
April 2021