Publications by authors named "Yao-Bing Yao"

2 Publications

  • Page 1 of 1

Inhibition of microRNA-29b suppresses oxidative stress and reduces apoptosis in ischemic stroke.

Neural Regen Res 2022 Feb;17(2):433-439

Neurological Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.

MicroRNAs (miRNAs) regulate protein expression by antagonizing the translation of mRNAs and are effective regulators of normal nervous system development, function, and disease. MicroRNA-29b (miR-29b) plays a broad and critical role in brain homeostasis. In this study, we tested the function of miR-29b in animal and cell models by inhibiting miR-29b expression. Mouse models of middle cerebral artery occlusion were established using the modified Zea-Longa suture method. Prior to modeling, 50 nmol/kg miR-29b antagomir was injected via the tail vein. MiR-29b expression was found to be abnormally increased in ischemic brain tissue. The inhibition of miR-29b expression decreased the neurological function score and reduced the cerebral infarction volume and cell apoptosis. In addition, the inhibition of miR-29b significantly decreased the malondialdehyde level, increased superoxide dismutase activity, and Bcl-2 expression, and inhibited Bax and Caspase3 expression. PC12 cells were treated with glutamate for 12 hours to establish in vitro cell models of ischemic stroke and then treated with the miR-29 antagomir for 48 hours. The results revealed that miR-29b inhibition in PC12 cells increased Bcl-2 expression and inhibited cell apoptosis and oxidative damage. These findings suggest that the inhibition of miR-29b inhibits oxidative stress and cell apoptosis in ischemic stroke, producing therapeutic effects in ischemic stroke. This study was approved by the Laboratory Animal Care and Use Committee of the First Affiliated Hospital of Zhengzhou University (approval No. 201709276S) on September 27, 2017.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4103/1673-5374.314319DOI Listing
February 2022

Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis.

Neural Regen Res 2022 Jan;17(1):194-202

Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.

Mesenchymal stem cell (MSC) transplantation is a promising treatment strategy for spinal cord injury, but immunological rejection and possible tumor formation limit its application. The therapeutic effects of MSCs mainly depend on their release of soluble paracrine factors. Exosomes are essential for the secretion of these paracrine effectors. Bone marrow mesenchymal stem cell-derived exosomes (BMSC-EXOs) can be substituted for BMSCs in cell transplantation. However, the underlying mechanisms remain unclear. In this study, a rat model of T10 spinal cord injury was established using the impact method. Then, 30 minutes and 1 day after spinal cord injury, the rats were administered 200 μL exosomes via the tail vein (200 μg/mL; approximately 1 × 10 BMSCs). Treatment with BMSC-EXOs greatly reduced neuronal cell death, improved myelin arrangement and reduced myelin loss, increased pericyte/endothelial cell coverage on the vascular wall, decreased blood-spinal cord barrier leakage, reduced caspase 1 expression, inhibited interleukin-1β release, and accelerated locomotor functional recovery in rats with spinal cord injury. In the cell culture experiment, pericytes were treated with interferon-γ and tumor necrosis factor-α. Then, Lipofectamine 3000 was used to deliver lipopolysaccharide into the cells, and the cells were co-incubated with adenosine triphosphate to simulate injury in vitro. Pre-treatment with BMSC-EXOs for 8 hours greatly reduced pericyte pyroptosis and increased pericyte survival rate. These findings suggest that BMSC-EXOs may protect pericytes by inhibiting pyroptosis and by improving blood-spinal cord barrier integrity, thereby promoting the survival of neurons and the extension of nerve fibers, and ultimately improving motor function in rats with spinal cord injury. All protocols were conducted with the approval of the Animal Ethics Committee of Zhengzhou University on March 16, 2019.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4103/1673-5374.314323DOI Listing
January 2022