Publications by authors named "Yanyong Cao"

13 Publications

  • Page 1 of 1

First Report of Maize Stalk Rot Caused by Fusarium kyushuense in China.

Plant Dis 2021 Apr 27. Epub 2021 Apr 27.

Chinese Academy of Agricultural Sciences, 12661, Institute of Crop Sciences, Haidian District, Beijing, China;

During 2017 to 2019, a field survey for maize stalk rot was conducted in 21 counties (districts) across the Guangxi province of China. This disease caused yield losses ranging from 20% to 30%. Maize plants with stalk rot were collected during the late milk stage and pieces of diseased pith tissue were cultured as previously described (Shan et al. 2017). Fungal colonies and mycelia with morphological characteristics of Fusarium species were subcultured onto fresh potato dextrose agar (PDA) and carnation leaf agar (CLA) plates. Based on morphological characteristics and molecular detection by amplification of Fusarium genus-specific primers (Duan et al. 2016), 39 Fusarium isolates were identified. Among them, five isolates from Du'an, Pingguo, Debao, and Daxin had abundant, pale orange to yellow aerial mycelium with deep red pigments when grown on PDA (Fig. 1A; 1B). The average growth rate was 8.0 to 12.0 mm per day at 25°C in the dark. The fungi produced two types of spores on CLA. Microconidia were ovoid to clavate, generally 0- to 3-septate, and 4.6 to 9.4 μm in length (n = 30) (Fig. 1D); Macroconidia were slightly curved with an acute apical cell, mostly 3- to 4- septate, and 19.4 to 38.2 μm in length (n = 30) (Fig. 1C). No chlamydospores were observed. These five isolates were initially identified as Fusarium kyushuense based on morphological features. PCR was performed to amplify three phylogenetic genes (TEF1-α, RPB1, and RPB2) (O'Donnell et al. 1998) and species specific primers kyuR1F/kyuR1R (5-TTTTCCTCACCAAGGAGCAGATCATG-3/5-TCCAATGGACTGGGCAGCCAAAACACC-3), kyuR2F/kyuR2R (5-CAGATATACATTTGCCTCGACAC-3/5-TACTTGAGCACGGAGCTTG-3) were used to confirm species identity. The obtained sequences were deposited in GenBank under the accession numbers MT997084, MT997080, MT997081 (TEF1-α); MT550012, MT997085, MT997086 (RPB1); MT550009, MT997089, and MT997090 (RPB2), respectively. Using BLAST, sequences of TEF1-α, RPB1, and RPB2 of the isolates were 99.33% (MH582297.1) to 100% (MG282364.1) similar to those of F. kyushuense strains (Supplementary Table 1). Based on phylogenetic analysis with maximum likelihood methods using tools of the website of CIPRES (http://www.phylo.org), isolates GX27, GX167, and GX204 clustered with F. kyushuense with 100% bootstrap support (Fig. 2). The pathogenicity of the three isolates was tested using young seedlings and adult plants as previously described with modification (Ye et al. 2013; Zhang et al. 2016). The primary roots of three-leaf-old seedlings were inoculated by immersing the roots into a 1 × 106 macroconidia solution, incubating for 6 h at 25°C, and transferring to normal growth conditions (26°C, 16 h light/22°C, 8 h dark). The second or third internode above the soil surface of flowering stage plants grown in a greenhouse was bored with a Bosch electric drill to make a hole (ca. 8 mm in diameter) and inoculated with 0.5 mL of mycelia plug then sealed with petrolatum. The inoculum was created by homogenizing five plates of flourish hyphal mats (approximately 125 mL) with kitchen blender and adjusting to a final volume of 200 mL with sterilized ddH2O. No symptoms were observed in the seedlings or adult plants that were mock-inoculated with PDA plugs. Three days post-inoculation (dpi), roots of the infected seedling turned dark-brown and shrunk and the leaves wilted (Fig. 1E). Typical stalk rot symptoms observed in the inoculated plants were premature wilting of entire plant and hollow and weak stalks, leading to lodging; the longitudinal section of the internodes exhibited obvious dark brown necrosis and reddish discoloration at 14 dpi and 30 dpi, respectively (Fig. 1F). Fusarium kyushuense was re-isolated from the inoculated stalk lesions but not from the control. This is the first record of stalk rot caused by F. kyushuense on maize plants in China. However, F. kyushuense is known to cause maize ear rot in China (Wang et al. 2014) and can produce type A and type B trichothecene mycotoxins in kernels (Aoki and O'Donnell 1998). The occurrence of maize stalk rot and ear rot caused by F. kyushuense should be monitored in China due to the potential risk for crop loss and mycotoxin contamination.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-11-20-2342-PDNDOI Listing
April 2021

Maize Is Involved in Drought Resistance and Recovery Ability Through an Abscisic Acid-Dependent Signaling Pathway.

Front Plant Sci 2021 1;12:629903. Epub 2021 Apr 1.

Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China.

Analyzing the transcriptome of maize leaves under drought stress and rewatering conditions revealed that transcription factors were involved in this process, among which of the ABSCISIC ACID-INSENSITIVE 5-like protein 5 family was induced to significantly up-regulated. The functional mechanism of in Abscisic acd (ABA) signaling pathway and its response to drought stress and rewatering has not been studied yet. The present study found that ZmbZIP33 contains a DNA-binding and dimerization domain, has transcriptional activation activity, and is highly homologous to SbABI1,SitbZIP68 and OsABA1. The expression of is strongly up-regulated by drought, high salt, high temperature, and ABA treatments. Overexpression of remarkably increased chlorophyll content and root length after drought stress and rewatering, and, moreover, cause an accumulation of ABA content, thereby improving drought resistance and recovery ability in . However, silencing the expression of (BMV-ZmbZIP33) remarkably decreased chlorophyll content, ABA content, superoxide dismutase and peroxidase activities, and increased stomatal opening and water loss rate compared with BMV (control). It showed that silencing lead to reduced drought resistance and recovery ability of maize. ABA sensitivity analysis found that 0.5 and 1 μmol/L treatments severely inhibited the root development of overexpression transgenic . However, the root growth of BMV was greatly inhibited for 1 and 5μmol/L ABA treatments, but not for BMV-ZmbZIP33. Subcellular localization, yeast two-hybrid and BIFC further confirmed that the core components of ABA signaling pathways ZmPYL10 and ZmPP2C7 interacted in nucleus, ZmPP2C7 and ZmSRK2E as well as ZmSRK2E and ZmbZIP33 interacted in the plasma membrane. We also found that expression levels of and in the BMV-ZmbZIP33 mutant were lower than those of BMV, while was the opposite under drought stress and rewatering. However, expression of and in normal maize leaves were significantly up-regulated by 3-4 folds after drought and ABA treatments for 24 h, while was down-regulated. The and encoding key enzymes in ABA biosynthesis are up-regulated in overexpression transgenic line under drought stress and rewatering conditions, but down-regulated in BMV-ZmbZIP33 mutants. Together, these findings demonstrate that played roles in ABA biosynthesis and regulation of drought response and rewatering in and maize thought an ABA-dependent signaling pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpls.2021.629903DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048716PMC
April 2021

Association Mapping and Transcriptome Analysis Reveal the Genetic Architecture of Maize Kernel Size.

Front Plant Sci 2021 18;12:632788. Epub 2021 Mar 18.

Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China.

Kernel length, kernel width, and kernel thickness are important traits affecting grain yield and product quality. Here, the genetic architecture of the three kernel size traits was dissected in an association panel of 309 maize inbred lines using four statistical methods. Forty-two significant single nucleotide polymorphisms (SNPs; < 1.72E-05) and 70 genes for the three traits were identified under five environments. One and eight SNPs were co-detected in two environments and by at least two methods, respectively, and they explained 5.87-9.59% of the phenotypic variation. Comparing the transcriptomes of two inbred lines with contrasting seed size, three and eight genes identified in the association panel showed significantly differential expression between the two genotypes at 15 and 39 days after pollination, respectively. Ten and 17 genes identified by a genome-wide association study were significantly differentially expressed between the two development stages in the two genotypes. Combining environment-/method-stable SNPs and differential expression analysis, ribosomal protein L7, jasmonate-regulated gene 21, serine/threonine-protein kinase RUNKEL, AP2-EREBP-transcription factor 16, and Zm00001d035222 (cell wall protein IFF6-like) were important candidate genes for maize kernel size and development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpls.2021.632788DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8013726PMC
March 2021

First Report of Fusarium thapsinum Causing Maize Stalk Rot in China.

Plant Dis 2021 Mar 18. Epub 2021 Mar 18.

Institute of Cereal Crops, Henan provincial key laboratory of Maize Biology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China;

Maize ( L.) is the most widely grown crop in China, which was planted 41.28 million hectares in 2019 (http://data.stats.gov.cnw/easyquery.htm?cn=C01&zb=A0D0F&sj=2019). Several fungal diseases of maize are reported in which stalk rot has become one of the most destructive diseases in China. The average yield losses affected by the disease are estimated at 10% to 20% (Yu et al. 2016). From 2017 to 2019, a survey was conducted to determine the population diversity of species associated with maize diseases in 18 cities across Henan province. stalk rot of maize with disease incidence more than 25% was observed in two continuous maize fields at Xuchang city. The diseased stem tissues from junctions in health and disease were chopped into small pieces (3 × 8 mm), superficially disinfected (70% ethyl alcohol for 1 min), placed onto potato dextrose agar (PDA) amended with L-(+)-Lactic-acid (1 g/L), poured in petri plates and incubated at 25°C for 4 days. Mycelia showing morphological characteristic of spp. were sub-cultured from single conidium. The pure fungal isolates produced fluffy colonies, white aerial mycelium with yellow pigment in agar. The radial mycelial growth was measured and calculated at an average growth rate 10.9 mm/day at 25°C (Fig. 1A; 1B). Macroconidia produced on carnation leaf agar (CLA) were relatively slender, slightly curved and thick-walled, mostly 3 to 5 marked septa, with a curved and tapering apical cell and poorly developed foot cell, 46.9 ± 5.6 µm × 4.9 ± 0.2 µm (Fig. 1C). Microconidia formed abundantly and were generally oval on CLA, 8.2 ± 0.5 µm × 3.4± 0.1 µm (Fig. 1D). No chlamydospores were observed. Morphological characteristics of the isolates matched the description of (Leslie and Summerell 2006). To further get the phylogenetic evidence, TEF1-α (translation elongation factor), RPB1 (the largest subunit of RNA polymerase II) and RPB2 (the second largest subunit of RNA polymerase II) were amplified with primer pairs EF1/EF2 (O'Donnell et al. 1998), thapR1F (5'-TTTTCCTCACAAAGGAGCAAATCATG-3')/thapR1R (5'-GTTCACCCAAGATATGGTCGAAAGCC-3'), and thapR2F (5'-ACTCTTTCACATTTGCGCCGAAC-3')/thapR2R (5'-CGGAGCTTTCGTCCAGTGTGAC-3'), and sequenced, respectively. The BLAST search of the sequences of EF1-α, RPB1 and RPB2 shared 99.87% to 100% identity with those of strains deposited in the GenBank (Supplementary Table 1). Sequences from two isolates (XCCG-3-B-1 and XCCG-3-A-1) were deposited in GenBank (Accession No. MT550014, MT997082 for EF-1α; MT550011, MT997087 for RPB1 and MT550008, MT997091 for RPB2). The phylogenetic relationships based on analysis of the partial sequences showed the representive isolates clustered together with at 96% bootstrap values (Fig. 2). Combined with the results of morphological characteristics and phylogenetic analysis, the strain designated as . To complete Koch's postulates, the pathogenicity of the isolates was tested using the silking-stage plants in a greenhouse based on previously described method with modification (Zhang et al. 2016). An 8 mm in diameter wound hole was created at the second or third internode of the plant above the soil surface and injected with 0.5 ml of mycelia plug. The inoculated stalk exhibited internal dark brown necrotic regions and the brown area elongated obviously around the insertion at 14 dpi (days post inoculation). At 30 dpi, the stalks turned soft, hollow and even lodging of the plants for those severe ones, which are similar to those observed on naturally infected maize plants in the field (Fig. 1F). When the roots of the three-leaf-stage seedlings were inoculated with 1×106 macroconidia solution (Ye et al. 2013), the root rot and leaf wilting symptoms were observed (Fig. 1E). While the control plants that were inoculated with only sterile water showed no disease symptoms. The pathogen was re-isolated from the inoculated tissues and the identity was confirmed by the morphological characters. had been described as causal agent of maize stalk rot in Pakistan (Tahir et al. 2018). To our knowledge, this is the first report of associated with maize stalk rot in China. The discovery will strengthen the theoretical foundation of maize stalk rot disease management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-11-20-2469-PDNDOI Listing
March 2021

A novel pathogenicity determinant hijacks maize catalase 1 to enhance viral multiplication and infection.

New Phytol 2021 05 24;230(3):1126-1141. Epub 2021 Feb 24.

State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China.

Pathogens have evolved various strategies to overcome host immunity for successful infection. Maize chlorotic mottle virus (MCMV) can cause lethal necrosis in maize (Zea mays) when it coinfects with a virus in the Potyviridae family. However, the MCMV pathogenicity determinant remains largely unknown. Here we show that the P31 protein of MCMV is important for viral accumulation and essential for symptom development. Ectopic expression of P31 using foxtail mosaic virus or potato virus X induced necrosis in systemically infected maize or Nicotiana benthamiana leaves. Maize catalases (CATs) were shown to interact with P31 in yeast and in planta. P31 accumulation was elevated through its interaction with ZmCAT1. P31 attenuated the expression of salicylic acid (SA)-responsive pathogenesis-related (PR) genes by inhibiting catalase activity during MCMV infection. In addition, silencing of ZmCATs using a brome mosaic virus-based gene silencing vector facilitated MCMV RNA and coat protein accumulation. This study reveals an important role for MCMV P31 in counteracting host defence and inducing systemic chlorosis and necrosis. Our results have implications for understanding the mechanisms in defence and counter-defence during infection of plants by various pathogens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.17206DOI Listing
May 2021

Integrating a genome-wide association study with transcriptomic analysis to detect genes controlling grain drying rate in maize (Zea may, L.).

Theor Appl Genet 2020 Feb 3;133(2):623-634. Epub 2019 Dec 3.

Institute of Cereal Crops, Henan Academy of Agricultural Sciences/Henan Key Laboratory of Maize Biology, Zhengzhou, 450002, China.

Key Message: Candidate genes on grain drying rate (GDR) were identified, and drying molecular mechanism of grain was explored by integrating genome-wide association with transcriptomic analysis in maize. Grain drying rate (GDR) is a key determinant of grain moisture at harvest. Here, a genome-wide association study (GWAS) of 309 inbred maize lines was used to identify single-nucleotide polymorphisms (SNPs) associated with drying rates of grain, cob and bract. Out of 217,933 SNPs, seven significant SNPs were repeatedly identified in four environments (P < 10). Based on genomic position of significant SNPs, six candidate genes were identified, one of which (Zm00001d047468) was verified by transcriptomic data between inbred lines with high and low GDR, indicating stable and reliable correlation with GDR. To further detect more genes correlated with GDR and explore drying molecular mechanism of grain, expression profile of all GWAS-identified genes (4941) detected from different environments, tissues and developmental stage was evaluated by transcriptomic data of six inbred lines with high or low GDR. Results revealed 162 genes exhibit up-regulated expression and another 123 down-regulated in three higher-GDR inbred lines. Based on GO enrichment, 162 up-regulated genes were significantly enriched into grain primary metabolic process, nitrogen compound metabolic process and macromolecule metabolic process (P < 0.05), which indicated grain filling imposes notable influence on GDR before and after physiological maturity. Our results lay foundation in accelerating development of higher-GDR maize germplasm through marker-assisted selection and clarifying genetic mechanism of GDR in maize.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-019-03492-0DOI Listing
February 2020

Maize phenylalanine ammonia-lyases contribute to resistance to Sugarcane mosaic virus infection, most likely through positive regulation of salicylic acid accumulation.

Mol Plant Pathol 2019 10 5;20(10):1365-1378. Epub 2019 Sep 5.

State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, 100193, China.

Sugarcane mosaic virus (SCMV) is a pathogen of worldwide importance that causes dwarf mosaic disease on maize (Zea mays). Until now, few maize genes/proteins have been shown to be involved in resistance to SCMV. In this study, we characterized the role of maize phenylalanine ammonia-lyases (ZmPALs) in accumulation of the defence signal salicylic acid (SA) and in resistance to virus infection. SCMV infection significantly increased SA accumulation and expression of SA-responsive pathogenesis-related protein genes (PRs). Interestingly, exogenous SA treatment decreased SCMV accumulation and enhanced resistance. Both reverse transcription-coupled quantitative PCR and RNA-Seq data confirmed that expression levels of at least four ZmPAL genes were significantly up-regulated upon SCMV infection. Knockdown of ZmPAL expression led to enhanced SCMV infection symptom severity and virus multiplication, and simultaneously resulted in decreased SA accumulation and PR gene expression. Intriguingly, application of exogenous SA to SCMV-infected ZmPAL-silenced maize plants decreased SCMV accumulation, showing that ZmPALs are required for SA-mediated resistance to SCMV infection. In addition, lignin measurements and metabolomic analysis showed that ZmPALs are also involved in SCMV-induced lignin accumulation and synthesis of other secondary metabolites via the phenylpropanoid pathway. In summary, our results indicate that ZmPALs are required for SA accumulation in maize and are involved in resistance to virus infection by limiting virus accumulation and moderating symptom severity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/mpp.12817DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792131PMC
October 2019

Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize.

J Exp Bot 2018 10;69(21):5177-5189

Synergetic Innovation Centre of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China.

Nuclear factor-Y (NF-Y) transcription factors are important regulators of several essential biological processes, including embryogenesis, drought resistance, meristem maintenance, and photoperiod-dependent flowering in Arabidopsis. However, the regulatory mechanisms of NF-Ys in maize (Zea mays) are not well understood yet. In this study, we identified an NF-Y transcription factor, ZmNF-YA3. Genome-wide analysis showed that ZmNF-YA3 bound to >6000 sites in the maize genome, 2259 of which are associated with genic sequences. ZmNF-YA3 was found to interact with CONSTANS-like (CO-like) and flowering promoting factor1 (FPF1) through yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Quantitative real-time reverse transcription-PCR (qRT-PCR) combined with yeast one-hybrid assay and EMSA suggested that NF-YA3 could promote early flowering by binding to the FLOWERING LOCUS T-like12 (FT-like12) promoter in maize. Morerover, we also showed that ZmNF-YA3 could improve drought and high-temperature tolerance through binding to the promoter regions of bHLH92, FAMA, and the jasmonic acid activator MYC4, respectively. These results contribute to a comprehensive understanding of the molecular mechanisms and regulatory networks of NF-Y transcription factors in regulating maize flowering time and stress response in maize.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/ery299DOI Listing
October 2018

Heterosis-related genes under different planting densities in maize.

J Exp Bot 2018 10;69(21):5077-5087

Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, PR China.

Heterosis and increasing planting density have contributed to improving maize grain yield (GY) for several decades. As planting densities increase, the GY per plot also increases, whereas the contribution of heterosis to GY decreases. There are trade-offs between heterosis and planting density, and the transcriptional characterization of heterosis may explain the mechanism involved. In this study, 48 transcriptome libraries were sequenced from four inbred Chinese maize lines and their F1 hybrids. They were planted at densities of 45000 and 67500 plants ha-1. Maternal-effect differentially expressed genes (DEGs) played important roles in processes related to photosynthesis and carbohydrate biosynthesis and metabolism. Paternal-effect DEGs participated in abiotic/biotic stress response and plant hormone production under high planting density. Weighted gene co-expression network analysis revealed that high planting density induced heterosis-related genes regulating abiotic/biotic stress response, plant hormone biosynthesis, and ubiquitin-mediated proteolysis, but repressed other genes regulating energy formation. Under high planting density, maternal genes were mainly enriched in the photosynthesis reaction center, while paternal genes were mostly concentrated in the peripheral antenna system. Four important genes were identified in maize heterosis and high planting density, all with functions in photosynthesis, starch biosynthesis, auxin metabolism, gene silencing, and RNAi.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/ery282DOI Listing
October 2018

Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Ustilago maydis.

Sci Rep 2017 10 17;7(1):13394. Epub 2017 Oct 17.

Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.

The common smut of corn, caused by Ustilago maydis is a troublesome disease of maize. Early and accurate detection of U. maydis is essential for the disease management. In this study, primer set Pep-2 was selected for LAMP (loop-mediated isothermal amplification) from 12 sets of primers targeting three U. maydis effector genes See1, Pit2 and Pep1 according to primer screening. The optimal concentrations of Bst DNA polymerase and Mg as well as inner/outer primer ratio of the LAMP reaction system were screened by combining a single factor experiment and an orthogonal design arrangement. The specificity of this real-time LAMP (RealAmp) assay was confirmed by negative testing for other pathogens. The detection sensitivity of the RealAmp assay was 200 times higher than that of detection through conventional PCR. Results of the RealAmp assay for quantifying the genomic DNA of U. maydis were confirmed by testing with both artificially and naturally infected samples. In addition, the RealAmp reaction could be conducted via an improved tube scanner to implement a "electricity free" assay from template preparation to quantitative detection. The resulting assay could be more convenient for use in the field as a simple, rapid, and effective technique for monitoring U. maydis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-13881-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645423PMC
October 2017

Identification of differentially regulated maize proteins conditioning Sugarcane mosaic virus systemic infection.

New Phytol 2017 Aug 19;215(3):1156-1172. Epub 2017 Jun 19.

State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China.

Sugarcane mosaic virus (SCMV) is the most important cause of maize dwarf mosaic disease. To identify maize genes responsive to SCMV infection and that may be involved in pathogenesis, a comparative proteomic analysis was performed using the first and second systemically infected leaves (termed 1 SL and 2 SL, respectively). Seventy-one differentially expressed proteins were identified in 1 SL and 2 SL upon SCMV infection. Among them, eight proteins showed the same changing patterns in both 1 SL and 2 SL. Functional annotations of regulated proteins and measurement of photosynthetic activity revealed that photosynthesis was more inhibited and defensive gene expression more pronounced in 1 SL than in 2 SL. Knockdown of regulated proteins in both 1 SL and 2 SL by a brome mosaic virus-based gene silencing vector in maize indicated that protein disulfide isomerase-like and phosphoglycerate kinase were required for optimal SCMV replication. By contrast, knockdown of polyamine oxidase (ZmPAO) significantly increased SCMV accumulation, implying that ZmPAO activity might contribute to resistance or tolerance. The results suggest that combining comparative proteomic analyses of different tissues and virus-induced gene silencing is an efficient way to identify host proteins supporting virus replication or enhancing resistance to virus infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.14645DOI Listing
August 2017

Comparative Study on the Transcriptome of Maize Mature Embryos from Two China Elite Hybrids Zhengdan958 and Anyu5.

PLoS One 2016 22;11(6):e0158028. Epub 2016 Jun 22.

Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China.

Zhengdan958 and Anyu5 are two elite maize hybrids of China, which manifest similar paternal lines (Chang7-2) but different maternal lines (Zheng58 and Ye478). Zhengdan958 has a 10-15% yield advantage over Anyu5. In this study, we applied digital gene expression technology to analyze transcriptomes of mature embryos from the two hybrids and their parents, aimed to investigate molecular mechanism of heterosis and genetic effects of maternal lines. Results showed that 71.66% and 49.70% of differentially expressed genes exhibited non-additive expression in Zhengdan958 and Anyu5, respectively. The number of non-additive genes involved in abiotic and biotic stress responses in Zhengdan958 was higher than that in Anyu5, which was in agreement with their phenotypic performance. Furthermore, common over-dominance and under-dominance genes (137 and 162, respectively) between the two hybrids focused on plant development and abiotic stress response. Zhengdan958 contained 97 maternal expression-level dominance (maternal-ELD) genes, and the number was higher than that of Anyu5 (45). Common up-regulated maternal-ELD genes were significantly enriched in meristem and shoot development while common down-regulated maternal-ELD genes were involved in pyruvate metabolic process, negative regulation of catalytic activity and response to stress. Therefore, non-additive genes mainly contribute to heterosis in Zhengdan958, including many genes for plant development, abiotic and biotic stress responses. Maternal effects may play important roles in maize heterosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158028PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917089PMC
July 2017

Possible involvement of maize Rop1 in the defence responses of plants to viral infection.

Mol Plant Pathol 2012 Sep 14;13(7):732-43. Epub 2012 Feb 14.

State Key Laboratory of Agro-biotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.

The expression of host genes can be altered during the process of viral infection. To investigate the viral infection-induced up-regulated gene expression changes of maize at different time intervals post-inoculation with Sugarcane mosaic virus (SCMV), a suppression subtractive hybridization cDNA library was constructed. A total of 454 cDNA clones were identified to be viral infection-induced up-regulated genes. The influence of Rop1 on the infection of maize by SCMV was investigated. The results showed that transient silencing of the ZmRop1 gene through virus-induced gene silencing enhanced the accumulation and systemic infection of SCMV and another potyvirus (Pennisetum mosaic virus) in maize plants, whereas transient over-expression of ZmRop1 in maize protoplasts reduced SCMV accumulation. Furthermore, it was demonstrated that the heterologous expression of ZmRop1 impaired Potato virus X infection in Nicotiana benthamiana plants. These data suggest that ZmRop1 may play a role in plant defence responses to viral infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1364-3703.2011.00782.xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638897PMC
September 2012