Publications by authors named "Yanyang Cao"

5 Publications

  • Page 1 of 1

Natural Compound α-PGG and Its Synthetic Derivative 6Cl-TGQ Alter Insulin Secretion: Evidence for Diminishing Glucose Uptake as a Mechanism.

Diabetes Metab Syndr Obes 2021 24;14:759-772. Epub 2021 Feb 24.

Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, University of California at Davis (UC Davis) School of Medicine, UC Davis Health Science, Sacramento, CA, 95817, USA.

Purpose: Previously we showed that natural compound α-penta-galloyl-glucose (α-PGG) and its synthetic derivative 6-chloro-6-deoxy-1,2,3,4-tetra-O-galloyl-α-D-glucopyranose (6Cl-TGQ) act to improve insulin signaling in adipocytes by increasing glucose transport. In this study, we investigated the mechanism of actions of α-PGG and 6Cl-TGQ on insulin secretion.

Methods: Mouse islets and/or INS-1832/13 beta-cells were used to test the effects of our compounds on glucose-stimulated insulin secretion (GSIS), intracellular calcium [Ca] using fura-2AM, glucose transport activity via a radioactive glucose uptake assay, intracellular ATP/ADP, and extracellular acidification (ECAR) and mitochondrial oxygen consumption rates (OCAR) using Seahorse metabolic analysis.

Results: Both compounds reduced GSIS in beta-cells without negatively affecting cell viability. The compounds primarily diminished glucose uptake into islets and beta-cells. Despite insulin-like effects in the peripheral tissues, these compounds do not act through the insulin receptor in islets. Further interrogation of the stimulus-secretion pathway showed that all the key metabolic factors involved in GSIS including ECAR, OCAR, ATP/ADP ratios, and [Ca] of INS-1832/13 cells were diminished after the compound treatment.

Conclusion: The compounds suppress glucose uptake of the beta-cells, which consequently slows down the rates of glycolysis and ATP synthesis, leading to decrease in [Ca] and GSIS. The difference between adipocytes and beta-cells in effects on glucose uptake is of great interest. Further structural and functional modifications could produce new compounds with optimized therapeutic potentials for different target cells. The higher potency of synthetic 6Cl-TGQ in enhancing insulin signaling in adipocytes but lower potency in reducing glucose uptake in beta-cells compared to α-PGG suggests the feasibility of such an approach.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
February 2021

Extracellular and macropinocytosis internalized ATP work together to induce epithelial-mesenchymal transition and other early metastatic activities in lung cancer.

Cancer Cell Int 2019 1;19:254. Epub 2019 Oct 1.

1Department of Biological Sciences, Ohio University, Athens, OH 45701 USA.

Background: Extracellular ATP (eATP) was shown to induce epithelial-mesenchymal transition (EMT), a very important early process in metastasis, in cancer cells via purinergic receptor signaling. However, the exact induction mechanisms are far from fully known. We previously described that eATP is internalized by cancer cells in vitro and in vivo by macropinocytosis in human non-small cell lung cancer A549 and other cancer cells, drastically elevates intracellular ATP levels, enhances cell proliferation and resistance to anticancer drugs. In this study, we tested the hypothesis that eATP and macropinocytosis-internalized eATP also induces EMT and other early steps of metastasis.

Methods: Floating cells, fencing, and transwell assays were used to show that ATP induces cell detachment, new colony formation, migration and invasion in human A549 and other lung cancer cells. Western blots were used to detect ATP-induced changes in EMT-related proteins; Confocal microscopy was used to demonstrate ATP-induced metastasis-related cell morphological changes. Inhibitors and siRNA knockdowns were used to determine P2X7's involvement in the ATP-induced EMT. CRISPR-Cas9 knockout of the SNX5 gene was used to identify macropinocytosis' roles in EMT and cancer cell growth both in vitro and in vivo. Student t-test and one-way ANOVA were used to determine statistical significance, P < 0.05 was considered significant.

Results: eATP potently induces expression of matrix metallopeptidases (MMPs), and detachment, EMT, migration, and invasion of lung cancer cells. The induction was independent of TGF-β and semi-independent of P2X7 activation. eATP performs these functions not only extracellularly, but also intracellularly after being macropinocytically internalized to further enhance P2X7-mediated EMT, filopodia formation and other early steps of metastasis. The knockout of macropinocytosis-associated SNX5 gene significantly reduces macropinocytosis, slows down tumor growth, and changes tumor morphology in nude mice.

Conclusions: Collectively, these results show that eATP's functions in these processes not only from outside of cancer cells but also inside after being macropinocytotically internalized. These findings shed light on eATP's initiator and effector roles in almost every step in early metastasis, which calls for rethinking and rebalancing energy equations of intracellular biochemical reactions and the Warburg effect, and identifies eATP and macropinocytosis as novel targets for potentially slowing down EMT and preventing metastasis.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
October 2019

Extracellular ATP, as an energy and phosphorylating molecule, induces different types of drug resistances in cancer cells through ATP internalization and intracellular ATP level increase.

Oncotarget 2017 Oct 23;8(50):87860-87877. Epub 2017 Sep 23.

Department of Biological Sciences, Ohio University, Athens, Ohio 45701, USA.

Cancer cells are able to uptake extracellular ATP (eATP) via macropinocytosis to elevate intracellular ATP (iATP) levels, enhancing their survival in drug treatment. However, the involved drug resistance mechanisms are unknown. Here we investigated the roles of eATP as either an energy or a phosphorylating molecule in general drug resistance mediated by ATP internalization and iATP elevation. We report that eATP increased iATP levels and promoted drug resistance to various tyrosine kinase inhibitors (TKIs) and chemo-drugs in human cancer cell lines of five cancer types. In A549 lung cancer cells, the resistance was downregulated by macropinocytosis inhibition or siRNA knockdown of PAK1, an essential macropinocytosis enzyme. The elevated iATP upregulated the efflux activity of ABC transporters in A549 and SK-Hep-1 cells as well as phosphorylation of PDGFRα and proteins in the PDGFR-mediated Akt-mTOR and Raf-MEK signaling pathways in A549 cells. Similar phosphorylation upregulations were found in A549 tumors. These results demonstrate that eATP induces different types of drug resistance by eATP internalization and iATP elevation, implicating the ATP-rich tumor microenvironment in cancer drug resistance, expanding our understanding of the roles of eATP in the Warburg effect and offering new anticancer drug resistance targets.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
October 2017

Genome-wide sequence transposon insertion sites and analyze the essential genes of Brucella melitensis.

Microb Pathog 2017 Nov 6;112:97-102. Epub 2017 Sep 6.

Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China. Electronic address:

A transposon mutant library of B. melitensis NI including 32,640 transposon mutants was established. By sequencing the transposon insertion sites, 10,832 mutants were successfully defined for their insertion sites. Analysis of the mutants with defined transposon insertion sites (DTIS) indicated that the insertions were well spread through the two genomes. In addition, 948 genes with no detectable transposon insertions were taken as the candidate for identification of essential genes. In comparison with the Bacterial Database of Essential Genes and by using comparative genomics analysis, 183 potential essential genes of B. melitensis NI cultured in vitro were found and they were conserved in the common bacteria. This work was focused on screening of the essential genes of B. melitensis NI, which may provide a foundation for identification of the novel drug targets against brucellosis. Besides, the sequence-defined transposon library should serve as a resource for screening of different function genes of Brucella.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
November 2017

Extracellular ATP a New Player in Cancer Metabolism: NSCLC Cells Internalize ATP In Vitro and In Vivo Using Multiple Endocytic Mechanisms.

Mol Cancer Res 2016 11 30;14(11):1087-1096. Epub 2016 Aug 30.

The Edison Biotechnology Institute, Ohio University, Athens, Ohio.

Intratumoral extracellular ATP concentrations are 1000 times higher than those in normal tissues of the same cell origin. However, whether or not cancer cells use the abundant extracellular ATP was unknown until we recently reported that cancer cells internalize ATP. The internalized ATP was found to substantially increase intracellular ATP concentration and promote cell proliferation and drug resistance in cancer cells. Here, using a nonhydrolyzable fluorescent ATP (NHF-ATP), radioactive and regular ATP, coupled with high and low molecular weight dextrans as endocytosis tracers and fluorescence microscopy and ATP assays, cultured human NSCLC A549 and H1299 cells as well as A549 tumor xenografts were found to internalize extracellular ATP at concentrations within the reported intratumoral extracellular ATP concentration range. In addition to macropinocytosis, both clathrin- and caveolae-mediated endocytosis significantly contribute to the ATP internalization, which led to an approximately 30% (within 45 minutes) or more than 50% (within 4 hours) increase in intracellular ATP levels after ATP incubation. This increase could not be accounted for by either purinergic receptor signaling or increased intracellular ATP synthesis rates in the ATP-treated cancer cells. These new findings significantly deepen our understanding of the Warburg effect by shedding light on how cancer cells in tumors, which are heterogeneous for oxygen and nutrition supplies, take up extracellular ATP and use the internalized ATP to perform multiple previously unrecognized functions of biological importance. They strongly suggest the existence of ATP sharing among cancer and stromal cells in tumors and simultaneously identify multiple new anticancer targets.

Implications: Extracellular ATP is taken up by human lung cancer cells and tumors via macropinocytosis and other endocytic processes to supplement their extra energy needs for cancer growth, survival, and drug resistance, thus providing novel targets for future cancer therapy. Mol Cancer Res; 14(11); 1087-96. ©2016 AACR.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
November 2016