Publications by authors named "Yanmei Yao"

3 Publications

  • Page 1 of 1

Neuroprotective effect of stroke pretreated MSCs against cerebral ischemia/reperfusion injury in rats.

World Neurosurg 2021 May 3. Epub 2021 May 3.

Department of General Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China. Electronic address:

Background: Mesenchymal stem cells (MSCs) have been shown to enhance neurological recovery after stroke. In this study, a middle cerebral artery occlusion (MCAO) rat model was designed to assess the neuroprotective effects of stroke pretreated MSCs on cerebral ischemia/reperfusion (I/R) injury.

Method: The MSCs were isolated and cultured in medium with 10% FBS, normal control serum (NS), or stroke serum (SS). Then these MSCs were injected into each group rats (n=6) 1 day after MCAO and continue feeding for 28 days. A battery of behavioral tests, TTC staining, hematoxylin and eosin staining, ELISA, and TUNEL assay were used to assess neural injury. Moreover, in order to detected the enhancement of neuronal regeneration and angiogenesis, immunofluorescence and western blotting were performed to assess the expression of trophic factor and growth factor.

Result: After treatment, the behaviour was improvement significantly. And the infarct area, brain lesion, and apoptosis cells were significantly decreased in the SS-MSCs group than others. It also modulated the inflammation by attenuating inflammatory cytokines. In addition, the number of neurogenesis positive cells, the expression of trophic factors and growth factors were significantly higher in the SS-MSCs group than others. At the same time, FBS-MSCs and NS-MSCs showed differences in the expression of trophic factors and growth factors, but the results were not as well as SS-MSCs.

Conclusion: SS-MSCs administration after the reperfusion led to neuroprotection by improving pathological changes, behavioral improvement, neurogenesis, suppression of apoptosis and inflammatory as well as angiogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2021.04.114DOI Listing
May 2021

Fine mapping of the Brassica napus Bnsdt1 gene associated with determinate growth habit.

Theor Appl Genet 2018 Jan 19;131(1):193-208. Epub 2017 Oct 19.

State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining, 810016, Qinghai, China.

Key Message: The newly discovered determinate plant growth habit of Brassica napus is a potential trait that might contribute to the genetic improvement of rapeseed. Brassica napus is an important species of rapeseed and has an indeterminate growth habit. However, a determinate inflorescence strain (4769) has been discovered among doubled haploid (DH) lines obtained from a spring B. napus × winter B. napus cross. We assessed the effect of the determinate growth habit on agronomic traits. The results showed that determinacy is beneficial for reducing plant height and flowering time, advancing maturity and maintaining productivity. We also investigated the inheritance of determinacy. A genetic analysis revealed that the phenotype of the determinate trait is controlled by one recessive gene, Bnsdt1. Mapping of the Bnsdt1 gene was subsequently conducted in BC1 and BC3 populations derived from combination 2014 × 4769. The results showed that the Bnsdt1 gene could be delimited to a region of approximately 220 kb, between 16,627 and 16,847 kb on A10. Within the target region, whole-genome re-sequencing identified two candidate regions (16,628-16,641 and 16,739-16,794 kb) of approximately 68 kb. A Blast analysis of the two candidate intervals found that BnaA10g26300D/GSBRNA2T00136426001 (BnTFL1) is homologous to the TFL1 gene of A. thaliana. Subsequently, quantitative reverse transcription (qRT)-PCR revealed that BnTFL1 was specifically expressed in the shoot apex. Collectively, the results of expression analysis provide preliminary evidence that BnTFL1 is a candidate gene for the inflorescence trait in 4769.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-017-2996-zDOI Listing
January 2018

Genetic characterization and fine mapping of a yellow-seeded gene in Dahuang (a Brassica rapa landrace).

Theor Appl Genet 2012 Mar 26;124(5):903-9. Epub 2011 Nov 26.

Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, National Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai, China.

The development of yellow-seeded cultivars in Brassica rapa (B. rapa) would improve the quality and quantity of available oil. The identification and mapping of the seed coat color gene may aid in the development of yellow-seeded cultivars and facilitate introgression of the yellow-seeded gene into desirable Brassica napus (B. napus) lines through marker-assisted selection. In the current study, we investigated the inheritance of a yellow-seeded landrace in B. rapa, "Dahuang", originating from the Qinghai-Tibetan plateau. Genetic analysis revealed that the phenotype of the yellow-seeded trait in Dahuang is controlled by one recessive gene, termed Brsc1. Mapping of the Brsc1 gene was subsequently conducted in a BC(1) population comprised 456 individuals, derived from (Dahuang × 09A-126) × Dahuang. From a survey of 256 amplified fragment length polymorphism (AFLP) primer combinations, 10 tightly linked AFLP markers were obtained. The closest AFLP markers flanking Brsc1, Y10 and Y06, were 0.2 and 0.4 cM away, respectively. Subsequently, using simple sequence repeat (SSR) markers in the reference map, the Brsc1 gene was mapped on A09 in B. rapa. Blast analysis revealed that seven AFLP markers showed sequence homology to A09 of B. rapa, wherein six AFLP markers in our map were in the same order as those in A09 of B. rapa. The two closest markers, Y10 and Y06, delimited the Brsc1 gene within a 2.8 Mb interval. Furthermore, Y05 and Y06, the two closest AFLP markers on one side linked to Brsc1, were located in scaffold000059 on A09 of B. rapa, whereas the closet AFLP marker on the opposite side of Brsc1, Y10, was located in scaffold000081 on A09 of B. rapa. Molecular markers developed from these studies may facilitate marker-assisted selection (MAS) of yellow-seeded lines in B. rapa and B. napus and expedite the process of map-based cloning of Brsc1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-011-1754-xDOI Listing
March 2012