Publications by authors named "Xuhai Be"

12 Publications

  • Page 1 of 1

Use of Cryopreserved Hepatocytes as Part of an Integrated Strategy to Characterize In Vivo Clearance for Peptide-Antibody Conjugate Inhibitors of Nav1.7 in Preclinical Species.

Drug Metab Dispos 2019 10 6;47(10):1111-1121. Epub 2019 Aug 6.

Pharmacokinetics and Drug Metabolism, Amgen Research, Cambridge, Massachusetts (R.S.F., X.B., L.B., D.H., L.H.); Therapeutic Discovery (K.B., J.A., Y.C., J.R.F., C.G., B.H., T.I., J.L., L.P.M., J.M., C.N., T.E.N., K.S., C.M.T., B.W., L.Y.), Neuroscience (B.M.), and Pharmacokinetics and Drug Metabolism (H.L., M.S., L.T.), Amgen Research, Thousand Oaks, California; and Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California (K.C., D.A.R.)

The identification of nonopioid alternatives to treat chronic pain has received a great deal of interest in recent years. Recently, the engineering of a series of Nav1.7 inhibitory peptide-antibody conjugates has been reported, and herein, the preclinical efforts to identify novel approaches to characterize the pharmacokinetic properties of the peptide conjugates are described. A cryopreserved plated mouse hepatocyte assay was designed to measure the depletion of the peptide-antibody conjugates from the media, with a correlation being observed between percentage remaining in the media and in vivo clearance (Pearson r = -0.5525). Physicochemical (charge and hydrophobicity), receptor-binding [neonatal Fc receptor (FcRn)], and in vivo pharmacokinetic data were generated and compared with the results from our in vitro hepatocyte assay, which was hypothesized to encompass all of the aforementioned properties. Correlations were observed among hydrophobicity; FcRn binding; depletion rates from the hepatocyte assay; and ultimately, in vivo clearance. Subsequent studies identified potential roles for the low-density lipoprotein and mannose/galactose receptors in the association of the Nav1.7 peptide conjugates with mouse hepatocytes, although in vivo studies suggested that FcRn was still the primary receptor involved in determining the pharmacokinetics of the peptide conjugates. Ultimately, the use of the cryopreserved hepatocyte assay along with FcRn binding and hydrophobic interaction chromatography provided an efficient and integrated approach to rapidly triage molecules for advancement while reducing the number of in vivo pharmacokinetic studies. SIGNIFICANCE STATEMENT: Although multiple in vitro and in silico tools are available in small-molecule drug discovery, pharmacokinetic characterization of protein therapeutics is still highly dependent upon the use of in vivo studies in preclinical species. The current work demonstrates the combined use of cryopreserved hepatocytes, hydrophobic interaction chromatography, and neonatal Fc receptor binding to characterize a series of Nav1.7 peptide-antibody conjugates prior to conducting in vivo studies, thus providing a means to rapidly evaluate novel protein therapeutic platforms while concomitantly reducing the number of in vivo studies conducted in preclinical species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.119.087742DOI Listing
October 2019

Engineering Na1.7 Inhibitory JzTx-V Peptides with a Potency and Basicity Profile Suitable for Antibody Conjugation To Enhance Pharmacokinetics.

ACS Chem Biol 2019 04 27;14(4):806-818. Epub 2019 Mar 27.

Drug discovery research on new pain targets with human genetic validation, including the voltage-gated sodium channel Na1.7, is being pursued to address the unmet medical need with respect to chronic pain and the rising opioid epidemic. As part of early research efforts on this front, we have previously developed Na1.7 inhibitory peptide-antibody conjugates with tarantula venom-derived GpTx-1 toxin peptides with an extended half-life (80 h) in rodents but only moderate in vitro activity (hNa1.7 IC = 250 nM) and without in vivo activity. We identified the more potent peptide JzTx-V from our natural peptide collection and improved its selectivity against other sodium channel isoforms through positional analogueing. Here we report utilization of the JzTx-V scaffold in a peptide-antibody conjugate and architectural variations in the linker, peptide loading, and antibody attachment site. We found conjugates with 100-fold improved in vitro potency relative to those of complementary GpTx-1 analogues, but pharmacokinetic and bioimaging analyses of these JzTx-V conjugates revealed a shorter than expected plasma half-life in vivo with accumulation in the liver. In an attempt to increase circulatory serum levels, we sought the reduction of the net +6 charge of the JzTx-V scaffold while retaining a desirable Na in vitro activity profile. The conjugate of a JzTx-V peptide analogue with a +2 formal charge maintained Na1.7 potency with 18-fold improved plasma exposure in rodents. Balancing the loss of peptide and conjugate potency associated with the reduction of net charge necessary for improved target exposure resulted in a compound with moderate activity in a Na1.7-dependent pharmacodynamic model but requires further optimization to identify a conjugate that can fully engage Na1.7 in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschembio.9b00183DOI Listing
April 2019

Discovery of Tarantula Venom-Derived Na1.7-Inhibitory JzTx-V Peptide 5-Br-Trp24 Analogue AM-6120 with Systemic Block of Histamine-Induced Pruritis.

J Med Chem 2018 11 22;61(21):9500-9512. Epub 2018 Oct 22.

Therapeutic Discovery, Amgen Research , Amgen Inc. , 1120 Veterans Blvd , South San Francisco , California 94080 , United States.

Inhibitors of the voltage-gated sodium channel Na1.7 are being investigated as pain therapeutics due to compelling human genetics. We previously identified Na1.7-inhibitory peptides GpTx-1 and JzTx-V from tarantula venom screens. Potency and selectivity were modulated through attribute-based positional scans of native residues via chemical synthesis. Herein, we report JzTx-V lead optimization to identify a pharmacodynamically active peptide variant. Molecular docking of peptide ensembles from NMR into a homology model-derived Na1.7 structure supported prioritization of key residues clustered on a hydrophobic face of the disulfide-rich folded peptide for derivatization. Replacing Trp24 with 5-Br-Trp24 identified lead peptides with activity in electrophysiology assays in engineered and neuronal cells. 5-Br-Trp24 containing peptide AM-6120 was characterized in X-ray crystallography and pharmacokinetic studies and blocked histamine-induced pruritis in mice after subcutaneous administration, demonstrating systemic Na1.7-dependent pharmacodynamics. Our data suggests a need for high target coverage based on plasma exposure for impacting in vivo end points with selectivity-optimized peptidic Na1.7 inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.8b00736DOI Listing
November 2018

Pharmacologic Characterization of AMG8379, a Potent and Selective Small Molecule Sulfonamide Antagonist of the Voltage-Gated Sodium Channel Na1.7.

J Pharmacol Exp Ther 2017 07 4;362(1):146-160. Epub 2017 May 4.

Department of Neuroscience (T.J.K., R.Y., S.A, C.P.I., M.J., D.J., J.H.L., S.G.L., J.Li., D.L., J.Lu., D.M., D.O., K.T., J.W., V.Y., D.X.D.Z., R.T.F., B.D.M.), Department of Medicinal Chemistry (M.M.W.), and Department of Pharmacokinetics and Drug Metabolism (X.B., V.B., J.R.), Amgen Inc., Cambridge, Massachusetts and Thousand Oaks, California

Potent and selective antagonists of the voltage-gated sodium channel Na1.7 represent a promising avenue for the development of new chronic pain therapies. We generated a small molecule atropisomer quinolone sulfonamide antagonist AMG8379 and a less active enantiomer AMG8380. Here we show that AMG8379 potently blocks human Na1.7 channels with an IC of 8.5 nM and endogenous tetrodotoxin (TTX)-sensitive sodium channels in dorsal root ganglion (DRG) neurons with an IC of 3.1 nM in whole-cell patch clamp electrophysiology assays using a voltage protocol that interrogates channels in a partially inactivated state. AMG8379 was 100- to 1000-fold selective over other Na family members, including Na1.4 expressed in muscle and Na1.5 expressed in the heart, as well as TTX-resistant Na channels in DRG neurons. Using an ex vivo mouse skin-nerve preparation, AMG8379 blocked mechanically induced action potential firing in C-fibers in both a time-dependent and dose-dependent manner. AMG8379 similarly reduced the frequency of thermally induced C-fiber spiking, whereas AMG8380 affected neither mechanical nor thermal responses. In vivo target engagement of AMG8379 in mice was evaluated in multiple Na1.7-dependent behavioral endpoints. AMG8379 dose-dependently inhibited intradermal histamine-induced scratching and intraplantar capsaicin-induced licking, and reversed UVB radiation skin burn-induced thermal hyperalgesia; notably, behavioral effects were not observed with AMG8380 at similar plasma exposure levels. AMG8379 is a potent and selective Na1.7 inhibitor that blocks sodium current in heterologous cells as well as DRG neurons, inhibits action potential firing in peripheral nerve fibers, and exhibits pharmacodynamic effects in translatable models of both itch and pain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.116.239590DOI Listing
July 2017

Discovery of N-(4-(3-(2-aminopyrimidin-4-yl)pyridin-2-yloxy)phenyl)-4-(4-methylthiophen-2-yl)phthalazin-1-amine (AMG 900), a highly selective, orally bioavailable inhibitor of aurora kinases with activity against multidrug-resistant cancer cell lines.

J Med Chem 2015 Jul 31;58(13):5189-207. Epub 2015 May 31.

†Departments of Medicinal Chemistry, ‡Pharmaceutical Research and Development, §Pharmacokinetics and Drug Metabolism, ∥Molecular Structure, and ⊥Oncology Research, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States, and Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States.

Efforts to improve upon the physical properties and metabolic stability of Aurora kinase inhibitor 14a revealed that potency against multidrug-resistant cell lines was compromised by increased polarity. Despite its high in vitro metabolic intrinsic clearance, 23r (AMG 900) showed acceptable pharmacokinetic properties and robust pharmacodynamic activity. Projecting from in vitro data to in vivo target coverage was not practical due to disjunctions between enzyme and cell data, complex and apparently contradictory indicators of binding kinetics, and unmeasurable free fraction in plasma. In contrast, it was straightforward to relate pharmacokinetics to pharmacodynamics and efficacy by following the time above a threshold concentration. On the basis of its oral route of administration, a selectivity profile that favors Aurora-driven pharmacology and its activity against multidrug-resistant cell lines, 23r was identified as a potential best-in-class Aurora kinase inhibitor. In phase 1 dose expansion studies with G-CSF support, 23r has shown promising single agent activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.5b00183DOI Listing
July 2015

LC-MS/MS bioanalytical method development for AMG 900: resolution of an isobaric interference in rodent in vivo studies.

J Pharm Biomed Anal 2013 Feb 2;74:171-7. Epub 2012 Nov 2.

Department of Pharmacokinetics and Drug Metabolism, Amgen, 360 Binney Street, Cambridge, MA 02142, United States.

AMG 900 is an orally available small molecule that is a highly potent and selective pan-aurora kinase inhibitor currently in development for the treatment of advanced human cancers. A co-eluting, isobaric interference was discovered in preliminary LC-MS/MS analyses of rodent in vivo pharmacokinetic samples during preclinical evaluation of AMG 900. The interference was identified as a major circulating N-oxide metabolite which partially converted to an [M+H-O](+) ion under the conditions of atmospheric pressure chemical ionization. A selective liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of AMG 900 and its N-oxide metabolite in plasma was developed and successfully applied for the bioanalysis of discovery stage preclinical rodent pharmacokinetic studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2012.10.026DOI Listing
February 2013

Deletion of Abcg2 has differential effects on excretion and pharmacokinetics of probe substrates in rats.

J Pharmacol Exp Ther 2012 Nov 6;343(2):316-24. Epub 2012 Aug 6.

Pharmacokinetics and Drug Metabolism, Amgen Inc., 360 Binney Street, Cambridge, MA 02142, USA.

This study was designed to characterize breast cancer resistance protein (Bcrp) knockout Abcg2(-/-) rats and assess the effect of ATP-binding cassette subfamily G member 2 (Abcg2) deletion on the excretion and pharmacokinetic properties of probe substrates. Deletion of the target gene in the Abcg2(-/-) rats was confirmed, whereas gene expression was unaffected for most of the other transporters and metabolizing enzymes. Biliary excretion of nitrofurantoin, sulfasalazine, and compound A [2-(5-methoxy-2-((2-methyl-1,3-benzothiazol-6-yl)amino)-4-pyridinyl)-1,5,6,7-tetrahydro-4H-pyrrolo[3,2-c]pyridin-4-one] accounted for 1.5, 48, and 48% of the dose in the Abcg2(+/+) rats, respectively, whereas it was decreased by 70 to 90% in the Abcg2(-/-) rats. Urinary excretion of nitrofurantoin, a significant elimination pathway, was unaffected in the Abcg2(-/-) rats, whereas renal clearance of sulfasalazine, a minor elimination pathway, was reduced by >90%. Urinary excretion of compound A was minimal. Systemic clearance in the Abcg2(-/-) rats decreased 22, 43 (p<0.05), and 57%, respectively, for nitrofurantoin, sulfasalazine, and compound A administered at 1 mg/kg and 27% for compound A administered at 5 mg/kg. Oral absorption of nitrofurantoin, a compound with high aqueous solubility and good permeability, was not limited by Bcrp. In contrast, the absence of Bcrp led to a 33- and 11-fold increase in oral exposure of sulfasalazine and compound A, respectively. These data show that Bcrp plays a crucial role in biliary excretion of these probe substrates and has differential effects on systemic clearance and oral absorption in rats depending on clearance mechanisms and compound properties. The Abcg2(-/-) rat is a useful model for understanding the role of Bcrp in elimination and oral absorption.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.112.197046DOI Listing
November 2012

Use of uptake intrinsic clearance from attached rat hepatocytes to predict hepatic clearance for poorly permeable compounds.

Xenobiotica 2012 Sep 22;42(9):830-40. Epub 2012 Mar 22.

Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, MA 02142, USA.

We previously reported that the accuracy of clearance (CL) prediction could be differentiated by permeability. CL was drastically under-predicted by in vitro metabolic intrinsic clearance (CL(int)) for compounds with low permeability (<5 × 10(-6) cm/s). We determined apparent uptake CL(int) by measuring initial disappearance from medium using attached rat hepatocytes and metabolic CL(int) by measuring parent depletion in suspended rat hepatocytes (cells and medium). Uptake and metabolic CL(int) were comparable for highly permeable metabolic marker compounds. In contrast, uptake CL(int) was 3- to 40-fold higher than metabolic CL(int) for rosuvastatin, bosentan, and 15 proprietary compounds, which had low permeability, suggesting that uptake could be a rate-determining step in hepatic elimination for these poorly permeable compounds. The prediction of hepatic CL was improved significantly when using uptake CL(int) for the compounds with low permeability. The average fold error was 2.2 and 6, as opposed to >11 and >47 by metabolic CL(int), with and without applying a scaling factor of 4, respectively. Uptake CL(int) from attached hepatocytes can be used as an alternative approach to predict hepatic clearance and to understand the significance of hepatic uptake in elimination in an early drug discovery setting.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3109/00498254.2012.667847DOI Listing
September 2012

Discovery of triazine-benzimidazoles as selective inhibitors of mTOR.

Bioorg Med Chem Lett 2011 Apr 12;21(7):2064-70. Epub 2011 Feb 12.

Medicinal Chemistry, Amgen Inc, 360 Binney St, Cambridge, MA 02142, USA.

mTOR is part of the PI3K/AKT pathway and is a central regulator of cell growth and survival. Since many cancers display mutations linked to the mTOR signaling pathway, mTOR has emerged as an important target for oncology therapy. Herein, we report the discovery of triazine benzimidazole inhibitors that inhibit mTOR kinase activity with up to 200-fold selectivity over the structurally homologous kinase PI3Kα. When tested in a panel of cancer cell lines displaying various mutations, a selective inhibitor from this series inhibited cellular proliferation with a mean IC(50) of 0.41 μM. Lead compound 42 demonstrated up to 83% inhibition of mTOR substrate phosphorylation in a murine pharmacodynamic model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2011.02.007DOI Listing
April 2011

In vitro and in vivo pharmacokinetic characterizations of AMG 900, an orally bioavailable small molecule inhibitor of aurora kinases.

Xenobiotica 2011 May 4;41(5):400-8. Epub 2011 Feb 4.

Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, MA 02142, USA.

AMG 900 is a small molecule being developed as an orally administered, highly potent, and selective pan-aurora kinase inhibitor. The aim of the investigations was to characterize in vitro and in vivo pharmacokinetic (PK) properties of AMG 900 in preclinical species. AMG 900 was rapidly metabolized in liver microsomes and highly bound to plasma proteins in the species tested. It was a weak Pgp substrate with good passive permeability. AMG 900 exhibited a low-to-moderate clearance and a small volume of distribution. Its terminal elimination half-life ranged from 0.6 to 2.4 h. AMG 900 was well-absorbed in fasted animals with an oral bioavailability of 31% to 107%. Food intake had an effect on rate (rats) or extent (dogs) of AMG 900 oral absorption. The clearance and volume of distribution at steady state in humans were predicted to be 27.3 mL/h/kg and 93.9 mL/kg, respectively. AMG 900 exhibited acceptable PK properties in preclinical species and was predicted to have low clearance in humans. AMG 900 is currently in Phase I clinical testing as a treatment for solid tumours. Preliminary human PK results appear to be consistent with the predictions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3109/00498254.2010.548534DOI Listing
May 2011

Discovery of a potent, selective, and orally bioavailable pyridinyl-pyrimidine phthalazine aurora kinase inhibitor.

J Med Chem 2010 Sep;53(17):6368-77

Department of Medicinal Chemistry, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142 and Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA.

The discovery of aurora kinases as essential regulators of cell division has led to intense interest in identifying small molecule aurora kinase inhibitors for the potential treatment of cancer. A high-throughput screening effort identified pyridinyl-pyrimidine 6a as a moderately potent dual inhibitor of aurora kinases -A and -B. Optimization of this hit resulted in an anthranilamide lead (6j) that possessed improved enzyme and cellular activity and exhibited a high level of kinase selectivity. However, this anthranilamide and subsequent analogues suffered from a lack of oral bioavailability. Converting the internally hydrogen-bonded six-membered pseudo-ring of the anthranilamide to a phthalazine (8a-b) led to a dramatic improvement in oral bioavailability (38-61%F) while maintaining the potency and selectivity characteristics of the anthranilamide series. In a COLO 205 tumor pharmacodynamic assay measuring phosphorylation of the aurora-B substrate histone H3 at serine 10 (p-histone H3), oral administration of 8b at 50 mg/kg demonstrated significant reduction in tumor p-histone H3 for at least 6 h.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm100394yDOI Listing
September 2010

Prediction of V(ss) from in vitro tissue-binding studies.

Drug Metab Dispos 2010 Jan;38(1):115-21

Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts, USA.

To predict volume of distribution at steady-state (V(ss)), empirical (e.g., allometry) and mechanistic (using physicochemical property data and plasma protein binding) methods have been used. None of these approaches has been able to predict V(ss) accurately for the total compliment of a wide range of drugs. Therefore, alternative approaches would be of value. This study evaluates the utility of in vitro nonspecific tissue-binding measurements in predicting V(ss) for a wide range of drugs in rats. Literature as well as proprietary compounds were studied. It was found that in vitro tissue-binding measurements combined with calculated effects of the pH partition hypothesis often predict V(ss) more accurately than other available mechanistic methods and that this approach can compliment existing methods. The V(ss) values for some compounds were not accurately predicted using either nonspecific tissue-binding experiments or other available mechanistic methods. The V(ss) for these drugs may not be describable by nonspecific tissue binding alone; there may be significant specific components to the mechanism of distribution for these drugs, such as pH-dependent uptake into lysosomes (primarily strongly basic drugs), active transport, and/or enterohepatic recirculation. A lack of prediction for certain drugs warrants further investigation into these mechanisms and their application to more accurate prediction of V(ss) by mechanistic means.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.109.029629DOI Listing
January 2010