Publications by authors named "Xuewei Fan"

5 Publications

  • Page 1 of 1

Exploring the effects of large-area dorsal skin irradiation on locomotor activity and plasm melatonin level in C3H/He mice.

Chronobiol Int 2021 Aug 5:1-10. Epub 2021 Aug 5.

Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, Shanghai, China.

As the largest organ exposed to the outside of mammals, skin has direct photosensitivity. Recent studies have even shown that cutaneous irradiation played a role in local circadian systems. However, whether it can further affect the central clock system is controversial. Here, plasm melatonin rhythm of melatonin-proficient C3H/He mice was assessed, and on this basis, a well-designed segmented lighting method was used to investigate the effects of dorsal skin irradiation on locomotor activity and plasm melatonin content in male C3H/He mice. In brief, mice were separately exposed to cutaneous irradiation, intraocular irradiation or darkness for 60 min at specific moments. The results showed that neither blue nor red cutaneous exposure had obvious effect on central rhythm oscillation while intraocular irradiation could significantly change the central clock of mice, and the effect of blue light was more forceful than red light. It suggests that intraocular nonvisual channels still play a dominant role in rhythmic regulation, which has not been challenged by the discovery of local light entrainment in exposed peripheral tissues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/07420528.2021.1962904DOI Listing
August 2021

The chicken pan-genome reveals gene content variation and a promoter region deletion in IGF2BP1 affecting body size.

Mol Biol Evol 2021 Jul 30. Epub 2021 Jul 30.

College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.

Domestication and breeding have reshaped the genomic architecture of chicken, but the retention and loss of genomic elements during these evolutionary processes remain unclear. We present the first chicken pan-genome constructed using 664 individuals, which identified an additional ∼66.5 Mb sequences that are absent from the reference genome (GRCg6a). The constructed pan-genome encoded 20,491 predicated protein-coding genes, of which higher expression level are observed in conserved genes relative to dispensable genes. Presence/absence variation (PAV) analyses demonstrated that gene PAV in chicken was shaped by selection, genetic drift, and hybridization. PAV-based GWAS identified numerous candidate mutations related to growth, carcass composition, meat quality, or physiological traits. Among them, a deletion in the promoter region of IGF2BP1 affecting chicken body size is reported, which is supported by functional studies and extra samples. This is the first time to report the causal variant of chicken body size QTL located at chromosome 27 which was repeatedly reported. Therefore, the chicken pan-genome is a useful resource for biological discovery and breeding. It improves our understanding of chicken genome diversity and provides materials to unveil the evolution history of chicken domestication.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msab231DOI Listing
July 2021

Global Observations and CMIP6 Simulations of Compound Extremes of Monthly Temperature and Precipitation.

Geohealth 2021 May 1;5(5):e2021GH000390. Epub 2021 May 1.

State Key Laboratory of Earth Surface Processes and Resource Ecology Faculty of Geographical Science Beijing Normal University Beijing China.

Compound climate extremes, such as events with concurrent temperature and precipitation extremes, have significant impacts on the health of humans and ecosystems. This paper aims to analyze temporal and spatial characteristics of compound extremes of monthly temperature and precipitation, evaluate the performance of the sixth phase of the Coupled Model Intercomparison Project (CMIP6) models in simulating compound extremes, and investigate their future changes under Shared Socioeconomic Pathways (SSPs). The results show a significant increase in the frequency of compound warm extremes (warm/dry and warm/wet) but a decrease in compound cold extremes (cold/dry and cold/wet) during 1985-2014 relative to 1955-1984. The observed upward trends of compound warm extremes over China are much higher than those worldwide during the period of interest. A multi-model ensemble (MME) of CMIP6 models performs well in simulating temporal changes of warm/wet extremes, and temporal correlation coefficients between MME and observations are above 0.86. Under future scenarios, CMIP6 simulations show substantial rises in compound warm extremes and declines in compound cold extremes. Globally, the average frequency of warm/wet extremes over a 30-yr period is projected to increase for 2070-2099 relative to 1985-2014 by 18.53, 34.15, 48.79, and 59.60 under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively. Inter-model uncertainties for the frequencies of compound warm extremes are considerably higher than those of compound cold extremes. The projected uncertainties in the global occurrences of warm/wet extremes are 3.82 times those of warm/dry extremes during 2070-2099 and especially high for the Amazon and the Tibetan Plateau.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1029/2021GH000390DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121137PMC
May 2021

Comparative transcriptome analysis of gene expression patterns on B16F10 melanoma cells under Photobiomodulation of different light modes.

J Photochem Photobiol B 2021 Mar 19;216:112127. Epub 2021 Jan 19.

Institute of Future Lighting, Academy for Engineering and Technology, Fudan University, 220th Handan Road, Shanghai 200433, China; Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan City 528403, China; Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai 200433, China. Electronic address:

Cutaneous melanoma is one of the aggressive cancers. Recent studies have shown that Photobiomodulation (PBM) can inhibit the proliferation of melanoma cells. However, it is not clear that the effect of PBM light mode on the inhibition of melanoma cells. Herein, we investigated the difference of influence between continuous wave (CW) and Pulse PBM on B16F10 melanoma cells. Our results suggested that Pulse mode had a more significant inhibition on the viability of B16F10 melanoma cells than CW mode under the PBM light parameter of wavelength, dose, and average irradiance at 457 nm, 1.14 J/cm, and 0.19 mW/cm. Besides, we revealed the differentially expressed genes of B16F10 melanoma cells under the various treatments of PBM light mode (not PBM treatment, CW mode, and Pulse mode) by RNA sequencing. Together, our data suggested that Pulse-PBM can improve the effect of PBM on cells significantly and there may be different molecular mechanisms between Pulse and CW mode including anti-proliferative and cell necrosis. The study shed new light on investigating the molecular mechanisms of various PBM light modes on B16F10 melanoma cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2021.112127DOI Listing
March 2021

Full-circle range and microradian resolution angle measurement using the orthogonal mirror self-mixing interferometry.

Opt Express 2018 Apr;26(8):10371-10381

The self-mixing technique based on the traditional reflecting mirror has been demonstrated with great merit for angle sensing applications. In order to solve the problems of the narrow measurement angle range and low resolution in traditional angle measurement method, we proposed an angle measurement system using orthogonal mirror self-mixing interferometry combine an orthogonal mirror with designed mechanical linkage. It overcomes the shortcomings of traditional angle measurement methods and realized the angle measurement with microradian resolution in a full-circle range of 0 rad to 2π rad. In the experiment, the measurement resolution can reach to 5.27 µrad and the absolute error can lower to ± 0.011µrad, which satisfies the requirements of most high accuracy angle measurement.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.010371DOI Listing
April 2018
-->