Publications by authors named "Xiuqing Guo"

270 Publications

The trans-ancestral genomic architecture of glycemic traits.

Nat Genet 2021 Jun 31;53(6):840-860. Epub 2021 May 31.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00852-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610958PMC
June 2021

Clonal hematopoiesis associated with epigenetic aging and clinical outcomes.

Aging Cell 2021 Jun 29;20(6):e13366. Epub 2021 May 29.

Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA.

Clonal hematopoiesis of indeterminate potential (CHIP) is a common precursor state for blood cancers that most frequently occurs due to mutations in the DNA-methylation modifying enzymes DNMT3A or TET2. We used DNA-methylation array and whole-genome sequencing data from four cohorts together comprising 5522 persons to study the association between CHIP, epigenetic clocks, and health outcomes. CHIP was strongly associated with epigenetic age acceleration, defined as the residual after regressing epigenetic clock age on chronological age, in several clocks, ranging from 1.31 years (GrimAge, p < 8.6 × 10 ) to 3.08 years (EEAA, p < 3.7 × 10 ). Mutations in most CHIP genes except DNA-damage response genes were associated with increases in several measures of age acceleration. CHIP carriers with mutations in multiple genes had the largest increases in age acceleration and decrease in estimated telomere length. Finally, we found that ~40% of CHIP carriers had acceleration >0 in both Hannum and GrimAge (referred to as AgeAccelHG+). This group was at high risk of all-cause mortality (hazard ratio 2.90, p < 4.1 × 10 ) and coronary heart disease (CHD) (hazard ratio 3.24, p < 9.3 × 10 ) compared to those who were CHIP-/AgeAccelHG-. In contrast, the other ~60% of CHIP carriers who were AgeAccelHG- were not at increased risk of these outcomes. In summary, CHIP is strongly linked to age acceleration in multiple clocks, and the combination of CHIP and epigenetic aging may be used to identify a population at high risk for adverse outcomes and who may be a target for clinical interventions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acel.13366DOI Listing
June 2021

Transcriptome prediction performance across machine learning models and diverse ancestries.

HGG Adv 2021 Apr 5;2(2). Epub 2021 Jan 5.

Program in Bioinformatics, Loyola University Chicago, Chicago, IL, USA.

Transcriptome prediction methods such as PrediXcan and FUSION have become popular in complex trait mapping. Most transcriptome prediction models have been trained in European populations using methods that make parametric linear assumptions like the elastic net (EN). To potentially further optimize imputation performance of gene expression across global populations, we built transcriptome prediction models using both linear and non-linear machine learning (ML) algorithms and evaluated their performance in comparison to EN. We trained models using genotype and blood monocyte transcriptome data from the Multi-Ethnic Study of Atherosclerosis (MESA) comprising individuals of African, Hispanic, and European ancestries and tested them using genotype and whole-blood transcriptome data from the Modeling the Epidemiology Transition Study (METS) comprising individuals of African ancestries. We show that the prediction performance is highest when the training and the testing population share similar ancestries regardless of the prediction algorithm used. While EN generally outperformed random forest (RF), support vector regression (SVR), and K nearest neighbor (KNN), we found that RF outperformed EN for some genes, particularly between disparate ancestries, suggesting potential robustness and reduced variability of RF imputation performance across global populations. When applied to a high-density lipoprotein (HDL) phenotype, we show including RF prediction models in PrediXcan revealed potential gene associations missed by EN models. Therefore, by integrating other ML modeling into PrediXcan and diversifying our training populations to include more global ancestries, we may uncover new genes associated with complex traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xhgg.2020.100019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087249PMC
April 2021

FGL1 as a modulator of plasma D-dimer levels: Exome-wide marker analysis of plasma tPA, PAI-1, and D-dimer.

J Thromb Haemost 2021 Apr 20. Epub 2021 Apr 20.

Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.

Background: Use of targeted exome-arrays with common, rare variants and functionally enriched variation has led to discovery of new genes contributing to population variation in risk factors. Plasminogen activator-inhibitor 1 (PAI-1), tissue plasminogen activator (tPA), and the plasma product D-dimer are important components of the fibrinolytic system. There have been few large-scale genome-wide or exome-wide studies of PAI-1, tPA, and D-dimer.

Objectives: We sought to discover new genetic loci contributing to variation in these traits using an exome-array approach.

Methods: Cohort-level analyses and fixed effects meta-analyses of PAI-1 (n = 15 603), tPA (n = 6876,) and D-dimer (n = 19 306) from 12 cohorts of European ancestry with diverse study design were conducted, including single-variant analyses and gene-based burden testing.

Results: Five variants located in NME7, FGL1, and the fibrinogen locus, all associated with D-dimer levels, achieved genome-wide significance (P < 5 × 10 ). Replication was sought for these 5 variants, as well as 45 well-imputed variants with P < 1 × 10 in the discovery using an independent cohort. Replication was observed for three out of the five significant associations, including a novel and uncommon (0.013 allele frequency) coding variant p.Trp256Leu in FGL1 (fibrinogen-like-1) with increased plasma D-dimer levels. Additionally, a candidate-gene approach revealed a suggestive association for a coding variant (rs143202684-C) in SERPINB2, and suggestive associations with consistent effect in the replication analysis include an intronic variant (rs11057830-A) in SCARB1 associated with increased D-dimer levels.

Conclusion: This work provides new evidence for a role of FGL1 in hemostasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jth.15345DOI Listing
April 2021

A System for Phenotype Harmonization in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program.

Am J Epidemiol 2021 Apr 16. Epub 2021 Apr 16.

Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington.

Genotype-phenotype association studies often combine phenotype data from multiple studies to increase power. Harmonization of the data usually requires substantial effort due to heterogeneity in phenotype definitions, study design, data collection procedures, and data set organization. Here we describe a centralized system for phenotype harmonization that includes input from phenotype domain and study experts, quality control, documentation, reproducible results, and data sharing mechanisms. This system was developed for the National Heart, Lung and Blood Institute's Trans-Omics for Precision Medicine program, which is generating genomic and other omics data for >80 studies with extensive phenotype data. To date, 63 phenotypes have been harmonized across thousands of participants from up to 17 studies per phenotype (participants recruited 1948-2012). We discuss challenges in this undertaking and how they were addressed. The harmonized phenotype data and associated documentation have been submitted to National Institutes of Health data repositories for controlled-access by the scientific community. We also provide materials to facilitate future harmonization efforts by the community, which include (1) the code used to generate the 63 harmonized phenotypes, enabling others to reproduce, modify or extend these harmonizations to additional studies; and (2) results of labeling thousands of phenotype variables with controlled vocabulary terms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/aje/kwab115DOI Listing
April 2021

Multi-ancestry genome-wide gene-sleep interactions identify novel loci for blood pressure.

Mol Psychiatry 2021 Apr 15. Epub 2021 Apr 15.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 P < 5 × 10), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (P < 5 × 10). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (P = 2 × 10). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (P < 10). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-021-01087-0DOI Listing
April 2021

Allele Specific Variation at APOE Increases Non-alcoholic Fatty Liver Disease and Obesity but Decreases Risk of Alzheimer's Disease and Myocardial Infarction.

Hum Mol Genet 2021 Apr 15. Epub 2021 Apr 15.

Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.

Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is highly correlated with metabolic disease. NAFLD results from environmental exposures acting on a susceptible polygenic background. This study performed the largest multiethnic investigation of exonic variation associated with NAFLD and correlated metabolic traits and diseases. An exome array meta-analysis was carried out among eight multiethnic population-based cohorts (n = 16 492) with computed tomography (CT) measured hepatic steatosis. A fixed effects meta-analysis identified five exome-wide significant loci (P < 5.30x10-7); including a novel signal near TOMM40/APOE. Joint analysis of TOMM40/APOE variants revealed the TOMM40 signal was attributed to APOE rs429358-T; APOE rs7412 was not associated with liver attenuation. Moreover, rs429358-T was associated with higher serum alanine aminotransferase, liver steatosis, cirrhosis, triglycerides and obesity; as well as, lower cholesterol and decreased risk of myocardial infarction (MI) and Alzheimer's disease (ad) in phenome-wide association analyses in the Michigan Genomics Initiative, United Kingdom Biobank and/or public datasets. These results implicate APOE in imaging-based identification of NAFLD. This association may or may not translate to non-alcoholic steatohepatitis (NASH); however, these results indicate a significant association with advanced liver disease and hepatic cirrhosis. These findings highlight allelic heterogeneity at the APOE locus and demonstrate an inverse link between NAFLD and ad at the exome level in the largest analysis to date.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab096DOI Listing
April 2021

Robust, flexible, and scalable tests for Hardy-Weinberg equilibrium across diverse ancestries.

Genetics 2021 May;218(1)

Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.

Traditional Hardy-Weinberg equilibrium (HWE) tests (the χ2 test and the exact test) have long been used as a metric for evaluating genotype quality, as technical artifacts leading to incorrect genotype calls often can be identified as deviations from HWE. However, in data sets composed of individuals from diverse ancestries, HWE can be violated even without genotyping error, complicating the use of HWE testing to assess genotype data quality. In this manuscript, we present the Robust Unified Test for HWE (RUTH) to test for HWE while accounting for population structure and genotype uncertainty, and to evaluate the impact of population heterogeneity and genotype uncertainty on the standard HWE tests and alternative methods using simulated and real sequence data sets. Our results demonstrate that ignoring population structure or genotype uncertainty in HWE tests can inflate false-positive rates by many orders of magnitude. Our evaluations demonstrate different tradeoffs between false positives and statistical power across the methods, with RUTH consistently among the best across all evaluations. RUTH is implemented as a practical and scalable software tool to rapidly perform HWE tests across millions of markers and hundreds of thousands of individuals while supporting standard VCF/BCF formats. RUTH is publicly available at https://www.github.com/statgen/ruth.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/genetics/iyab044DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128395PMC
May 2021

Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry.

Am J Hum Genet 2021 04 12;108(4):564-582. Epub 2021 Mar 12.

The Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.02.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059339PMC
April 2021

Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.

Nature 2021 02 10;590(7845):290-299. Epub 2021 Feb 10.

The Broad Institute of MIT and Harvard, Cambridge, MA, USA.

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes). In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03205-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875770PMC
February 2021

Whole genome sequence analyses of eGFR in 23,732 people representing multiple ancestries in the NHLBI trans-omics for precision medicine (TOPMed) consortium.

EBioMedicine 2021 Jan 6;63:103157. Epub 2021 Jan 6.

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.

Background: Genetic factors that influence kidney traits have been understudied for low frequency and ancestry-specific variants.

Methods: We combined whole genome sequencing (WGS) data from 23,732 participants from 10 NHLBI Trans-Omics for Precision Medicine (TOPMed) Program multi-ethnic studies to identify novel loci for estimated glomerular filtration rate (eGFR). Participants included European, African, East Asian, and Hispanic ancestries. We applied linear mixed models using a genetic relationship matrix estimated from the WGS data and adjusted for age, sex, study, and ethnicity.

Findings: When testing single variants, we identified three novel loci driven by low frequency variants more commonly observed in non-European ancestry (PRKAA2, rs180996919, minor allele frequency [MAF] 0.04%, P = 6.1 × 10; METTL8, rs116951054, MAF 0.09%, P = 4.5 × 10; and MATK, rs539182790, MAF 0.05%, P = 3.4 × 10). We also replicated two known loci for common variants (rs2461702, MAF=0.49, P = 1.2 × 10, nearest gene GATM, and rs71147340, MAF=0.34, P = 3.3 × 10, CDK12). Testing aggregated variants within a gene identified the MAF gene. A statistical approach based on local ancestry helped to identify replication samples for ancestry-specific variants.

Interpretation: This study highlights challenges in studying variants influencing kidney traits that are low frequency in populations and more common in non-European ancestry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2020.103157DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804602PMC
January 2021

Genome-wide association study identifying novel variant for fasting insulin and allelic heterogeneity in known glycemic loci in Chilean adolescents: The Santiago Longitudinal Study.

Pediatr Obes 2021 Jul 30;16(7):e12765. Epub 2020 Dec 30.

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Background: The genetic underpinnings of glycemic traits have been understudied in adolescent and Hispanic/Latino (H/L) populations in comparison to adults and populations of European ancestry.

Objective: To identify genetic factors underlying glycemic traits in an adolescent H/L population.

Methods: We conducted a genome-wide association study (GWAS) of fasting glucose (FG) and fasting insulin (FI) in H/L adolescents from the Santiago Longitudinal Study.

Results: We identified one novel variant positioned in the CSMD1 gene on chromosome 8 (rs77465890, effect allele frequency = 0.10) that was associated with FI (β = -0.299, SE = 0.054, p = 2.72×10 ) and was only slightly attenuated after adjusting for body mass index z-scores (β = -0.252, SE = 0.047, p = 1.03×10 ). We demonstrated directionally consistent, but not statistically significant results in African and Hispanic adults of the Population Architecture Using Genomics and Epidemiology Consortium. We also identified secondary signals for two FG loci after conditioning on known variants, which demonstrate allelic heterogeneity in well-known glucose loci.

Conclusion: Our results exemplify the importance of including populations with diverse ancestral origin and adolescent participants in GWAS of glycemic traits to uncover novel risk loci and expand our understanding of disease aetiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ijpo.12765DOI Listing
July 2021

Loss-of-function genomic variants highlight potential therapeutic targets for cardiovascular disease.

Nat Commun 2020 12 18;11(1):6417. Epub 2020 Dec 18.

The Institute for Translational Genomics and Population Sciences, Department of Pediatrics and Los Angeles Biomedical Research Institute, Harbor-UCLA, Torrance, CA, USA.

Pharmaceutical drugs targeting dyslipidemia and cardiovascular disease (CVD) may increase the risk of fatty liver disease and other metabolic disorders. To identify potential novel CVD drug targets without these adverse effects, we perform genome-wide analyses of participants in the HUNT Study in Norway (n = 69,479) to search for protein-altering variants with beneficial impact on quantitative blood traits related to cardiovascular disease, but without detrimental impact on liver function. We identify 76 (11 previously unreported) presumed causal protein-altering variants associated with one or more CVD- or liver-related blood traits. Nine of the variants are predicted to result in loss-of-function of the protein. This includes ZNF529:p.K405X, which is associated with decreased low-density-lipoprotein (LDL) cholesterol (P = 1.3 × 10) without being associated with liver enzymes or non-fasting blood glucose. Silencing of ZNF529 in human hepatoma cells results in upregulation of LDL receptor and increased LDL uptake in the cells. This suggests that inhibition of ZNF529 or its gene product should be prioritized as a novel candidate drug target for treating dyslipidemia and associated CVD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-20086-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749177PMC
December 2020

A Noncoding Variant Near PPP1R3B Promotes Liver Glycogen Storage and MetS, but Protects Against Myocardial Infarction.

J Clin Endocrinol Metab 2021 Jan;106(2):372-387

Brigham and Women's Hospital, Havard University, Boston, MA, USA.

Context: Glycogen storage diseases are rare. Increased glycogen in the liver results in increased attenuation.

Objective: Investigate the association and function of a noncoding region associated with liver attenuation but not histologic nonalcoholic fatty liver disease.

Design: Genetics of Obesity-associated Liver Disease Consortium.

Setting: Population-based.

Main Outcome: Computed tomography measured liver attenuation.

Results: Carriers of rs4841132-A (frequency 2%-19%) do not show increased hepatic steatosis; they have increased liver attenuation indicative of increased glycogen deposition. rs4841132 falls in a noncoding RNA LOC157273 ~190 kb upstream of PPP1R3B. We demonstrate that rs4841132-A increases PPP1R3B through a cis genetic effect. Using CRISPR/Cas9 we engineered a 105-bp deletion including rs4841132-A in human hepatocarcinoma cells that increases PPP1R3B, decreases LOC157273, and increases glycogen perfectly mirroring the human disease. Overexpression of PPP1R3B or knockdown of LOC157273 increased glycogen but did not result in decreased LOC157273 or increased PPP1R3B, respectively, suggesting that the effects may not all occur via affecting RNA levels. Based on electronic health record (EHR) data, rs4841132-A associates with all components of the metabolic syndrome (MetS). However, rs4841132-A associated with decreased low-density lipoprotein (LDL) cholesterol and risk for myocardial infarction (MI). A metabolic signature for rs4841132-A includes increased glycine, lactate, triglycerides, and decreased acetoacetate and beta-hydroxybutyrate.

Conclusions: These results show that rs4841132-A promotes a hepatic glycogen storage disease by increasing PPP1R3B and decreasing LOC157273. rs4841132-A promotes glycogen accumulation and development of MetS but lowers LDL cholesterol and risk for MI. These results suggest that elevated hepatic glycogen is one cause of MetS that does not invariably promote MI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/clinem/dgaa855DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823249PMC
January 2021

Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals.

Nat Genet 2020 12 23;52(12):1314-1332. Epub 2020 Nov 23.

Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.

Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00713-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610439PMC
December 2020

Genetic loci associated with prevalent and incident myocardial infarction and coronary heart disease in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.

PLoS One 2020 13;15(11):e0230035. Epub 2020 Nov 13.

The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America.

Background: Genome-wide association studies have identified multiple genomic loci associated with coronary artery disease, but most are common variants in non-coding regions that provide limited information on causal genes and etiology of the disease. To overcome the limited scope that common variants provide, we focused our investigation on low-frequency and rare sequence variations primarily residing in coding regions of the genome.

Methods And Results: Using samples of individuals of European ancestry from ten cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, both cross-sectional and prospective analyses were conducted to examine associations between genetic variants and myocardial infarction (MI), coronary heart disease (CHD), and all-cause mortality following these events. For prevalent events, a total of 27,349 participants of European ancestry, including 1831 prevalent MI cases and 2518 prevalent CHD cases were used. For incident cases, a total of 55,736 participants of European ancestry were included (3,031 incident MI cases and 5,425 incident CHD cases). There were 1,860 all-cause deaths among the 3,751 MI and CHD cases from six cohorts that contributed to the analysis of all-cause mortality. Single variant and gene-based analyses were performed separately in each cohort and then meta-analyzed for each outcome. A low-frequency intronic variant (rs988583) in PLCL1 was significantly associated with prevalent MI (OR = 1.80, 95% confidence interval: 1.43, 2.27; P = 7.12 × 10-7). We conducted gene-based burden tests for genes with a cumulative minor allele count (cMAC) ≥ 5 and variants with minor allele frequency (MAF) < 5%. TMPRSS5 and LDLRAD1 were significantly associated with prevalent MI and CHD, respectively, and RC3H2 and ANGPTL4 were significantly associated with incident MI and CHD, respectively. No loci were significantly associated with all-cause mortality following a MI or CHD event.

Conclusion: This study identified one known locus (ANGPTL4) and four new loci (PLCL1, RC3H2, TMPRSS5, and LDLRAD1) associated with cardiovascular disease risk that warrant further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230035PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665790PMC
December 2020

Genome-Wide Association Study Highlights as a Novel Locus for Lipoprotein(a) Levels-Brief Report.

Arterioscler Thromb Vasc Biol 2021 01 29;41(1):458-464. Epub 2020 Oct 29.

Division of Experimental Medicine (M.H., H.Y.C., G.T., J.C.E.), McGill University, Montreal, Quebec.

Objective: Lp(a) (lipoprotein[a]) is an independent risk factor for cardiovascular diseases and plasma levels are primarily determined by variation at the locus. We performed a genome-wide association study in the UK Biobank to determine whether additional loci influence Lp(a) levels. Approach and Results: We included 293 274 White British individuals in the discovery analysis. Approximately 93 095 623 variants were tested for association with natural log-transformed Lp(a) levels using linear regression models adjusted for age, sex, genotype batch, and 20 principal components of genetic ancestry. After quality control, 131 independent variants were associated at genome-wide significance ≤5×10). In addition to validating previous associations at , , and , we identified a novel variant at the locus, encoding β2GPI (beta2-glycoprotein I). The variant rs8178824 was associated with increased Lp(a) levels (β [95% CI] [ln nmol/L], 0.064 [0.047-0.081]; =2.8×10) and demonstrated a stronger effect after adjustment for variation at the locus (β [95% CI] [ln nmol/L], 0.089 [0.076-0.10]; =3.8×10). This association was replicated in a meta-analysis of 5465 European-ancestry individuals from the Framingham Offspring Study and Multi-Ethnic Study of Atherosclerosis (β [95% CI] [ln mg/dL], 0.16 [0.044-0.28]; =0.0071).

Conclusions: In a large-scale genome-wide association study of Lp(a) levels, we identified as a novel locus for Lp(a) in individuals of European ancestry. Additional studies are needed to determine the precise role of β2GPI in influencing Lp(a) levels as well as its potential as a therapeutic target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.120.314965DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7769958PMC
January 2021

Inherited causes of clonal haematopoiesis in 97,691 whole genomes.

Nature 2020 10 14;586(7831):763-768. Epub 2020 Oct 14.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer and coronary heart disease-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP). Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2819-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944936PMC
October 2020

Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants.

Nat Commun 2020 10 14;11(1):5182. Epub 2020 Oct 14.

The Institute for Translational Genomics and Population Sciences, The Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA.

Chronic obstructive pulmonary disease (COPD), diagnosed by reduced lung function, is a leading cause of morbidity and mortality. We performed whole genome sequence (WGS) analysis of lung function and COPD in a multi-ethnic sample of 11,497 participants from population- and family-based studies, and 8499 individuals from COPD-enriched studies in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program. We identify at genome-wide significance 10 known GWAS loci and 22 distinct, previously unreported loci, including two common variant signals from stratified analysis of African Americans. Four novel common variants within the regions of PIAS1, RGN (two variants) and FTO show evidence of replication in the UK Biobank (European ancestry n ~ 320,000), while colocalization analyses leveraging multi-omic data from GTEx and TOPMed identify potential molecular mechanisms underlying four of the 22 novel loci. Our study demonstrates the value of performing WGS analyses and multi-omic follow-up in cohorts of diverse ancestry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-18334-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598941PMC
October 2020

Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity.

Diabetes 2020 12 11;69(12):2806-2818. Epub 2020 Sep 11.

Department of Biostatistics, Boston University School of Public Health, Boston, MA.

Leptin influences food intake by informing the brain about the status of body fat stores. Rare mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in , , , and , and one intergenic variant near The missense variant Val94Met (rs17151919) in was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry ( = 2 × 10, = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db20-0070DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679778PMC
December 2020

rs641738C>T near MBOAT7 is associated with liver fat, ALT and fibrosis in NAFLD: A meta-analysis.

J Hepatol 2021 Jan 31;74(1):20-30. Epub 2020 Aug 31.

MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK.

Background & Aims: A common genetic variant near MBOAT7 (rs641738C>T) has been previously associated with hepatic fat and advanced histology in NAFLD; however, these findings have not been consistently replicated in the literature. We aimed to establish whether rs641738C>T is a risk factor across the spectrum of NAFLD and to characterise its role in the regulation of related metabolic phenotypes through a meta-analysis.

Methods: We performed a meta-analysis of studies with data on the association between rs641738C>T genotype and liver fat, NAFLD histology, and serum alanine aminotransferase (ALT), lipids or insulin. These included directly genotyped studies and population-level data from genome-wide association studies (GWAS). We performed a random effects meta-analysis using recessive, additive and dominant genetic models.

Results: Data from 1,066,175 participants (9,688 with liver biopsies) across 42 studies were included in the meta-analysis. rs641738C>T was associated with higher liver fat on CT/MRI (+0.03 standard deviations [95% CI 0.02-0.05], p = 4.8×10) and diagnosis of NAFLD (odds ratio [OR] 1.17 [95% CI 1.05-1.3], p = 0.003) in Caucasian adults. The variant was also positively associated with presence of advanced fibrosis (OR 1.22 [95% CI 1.03-1.45], p = 0.021) in Caucasian adults using a recessive model of inheritance (CC + CT vs. TT). Meta-analysis of data from previous GWAS found the variant to be associated with higher ALT (p = 0.002) and lower serum triglycerides (p = 1.5×10). rs641738C>T was not associated with fasting insulin and no effect was observed in children with NAFLD.

Conclusions: Our study validates rs641738C>T near MBOAT7 as a risk factor for the presence and severity of NAFLD in individuals of European descent.

Lay Summary: Fatty liver disease is a common condition where fat builds up in the liver, which can cause liver inflammation and scarring (including 'cirrhosis'). It is closely linked to obesity and diabetes, but some genes are also thought to be important. We did this study to see whether one specific change ('variant') in one gene ('MBOAT7') was linked to fatty liver disease. We took data from over 40 published studies and found that this variant near MBOAT7 is linked to more severe fatty liver disease. This means that drugs designed to work on MBOAT7 could be useful for treating fatty liver disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2020.08.027DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755037PMC
January 2021

Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale.

Nat Genet 2020 09 24;52(9):969-983. Epub 2020 Aug 24.

Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Large-scale whole-genome sequencing studies have enabled the analysis of rare variants (RVs) associated with complex phenotypes. Commonly used RV association tests have limited scope to leverage variant functions. We propose STAAR (variant-set test for association using annotation information), a scalable and powerful RV association test method that effectively incorporates both variant categories and multiple complementary annotations using a dynamic weighting scheme. For the latter, we introduce 'annotation principal components', multidimensional summaries of in silico variant annotations. STAAR accounts for population structure and relatedness and is scalable for analyzing very large cohort and biobank whole-genome sequencing studies of continuous and dichotomous traits. We applied STAAR to identify RVs associated with four lipid traits in 12,316 discovery and 17,822 replication samples from the Trans-Omics for Precision Medicine Program. We discovered and replicated new RV associations, including disruptive missense RVs of NPC1L1 and an intergenic region near APOC1P1 associated with low-density lipoprotein cholesterol.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-0676-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483769PMC
September 2020

Genetic Determinants of Electrocardiographic P-Wave Duration and Relation to Atrial Fibrillation.

Circ Genom Precis Med 2020 10 21;13(5):387-395. Epub 2020 Aug 21.

DZHK (German Center for Cardiovascular Research), partner site Greifswald, Germany (A.T., U.V., M.D., S.B.F.).

Background: The P-wave duration (PWD) is an electrocardiographic measurement that represents cardiac conduction in the atria. Shortened or prolonged PWD is associated with atrial fibrillation (AF). We used exome-chip data to examine the associations between common and rare variants with PWD.

Methods: Fifteen studies comprising 64 440 individuals (56 943 European, 5681 African, 1186 Hispanic, 630 Asian) and ≈230 000 variants were used to examine associations with maximum PWD across the 12-lead ECG. Meta-analyses summarized association results for common variants; gene-based burden and sequence kernel association tests examined low-frequency variant-PWD associations. Additionally, we examined the associations between PWD loci and AF using previous AF genome-wide association studies.

Results: We identified 21 common and low-frequency genetic loci (14 novel) associated with maximum PWD, including several AF loci (, , , , , , , ). The top variants at known sarcomere genes () were associated with longer PWD and increased AF risk. However, top variants at other loci (eg, and ) were associated with longer PWD but lower AF risk.

Conclusions: Our results highlight multiple novel genetic loci associated with PWD, and underscore the shared mechanisms of atrial conduction and AF. Prolonged PWD may be an endophenotype for several different genetic mechanisms of AF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.119.002874DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578098PMC
October 2020

Physical Activity Associations with Bone Mineral Density and Modification by Metabolic Traits.

J Endocr Soc 2020 Aug 7;4(8):bvaa092. Epub 2020 Jul 7.

Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.

Objective: To assess the relationship of physical activity with bone mineral density (BMD) at various sites and examine potential modifying metabolic factors.

Methods: Responses from physical activity questionnaires were used to determine total physical activity (PA), moderate physical activity (mod-PA), and sedentary time. Regression analyses were performed to evaluate association of activity traits with insulin sensitivity by euglycemic clamp, adiponectin, C-reactive protein (CRP), and plasminogen activator inhibitor-1 (PAI-1) in 741 healthy subjects.

Results: The cohort was relatively sedentary. Activity level was associated with arm, pelvis, and leg BMD in univariate analyses. In multivariate association analyses of arm BMD, only female sex (β = -0.73, < 0.0001) and adiponectin (β = -0.076, = 0.0091) were significant. Multivariate analyses of pelvis BMD found independent associations with body mass index (BMI) (β = 0.33, < 0.0001), adiponectin (β = -0.10, = 0.013), female sex (β = -0.18, < 0.0001), sedentary time (β = -0.088, = 0.034), PA (β = 0.11, = 0.01), and mod-PA (β = 0.11, = 0.014). Age (β = -0.10, = 0.0087), female sex (β = -0.63, < 0.0001), BMI (β = 0.24, < 0.0001), and mod-PA (β = 0.10, = 0.0024) were independently associated with leg BMD.

Conclusions: These results suggest that BMD increases with physical activity in the arms, legs, and pelvis and is inversely related to sedentary time in the pelvis and legs; these associations may be modified by age, sex, BMI, and adiponectin, depending on the site, with physical activity being more important to pelvis and leg BMD than arm BMD and sedentary time being important for pelvis BMD. Moreover, we demonstrated that CRP, PAI-1, and insulin sensitivity play a minor role in BMD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/jendso/bvaa092DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417873PMC
August 2020

X chromosome dosage of histone demethylase KDM5C determines sex differences in adiposity.

J Clin Invest 2020 11;130(11):5688-5702

Molecular Biology Institute.

Males and females differ in body composition and fat distribution. Using a mouse model that segregates gonadal sex (ovaries and testes) from chromosomal sex (XX and XY), we showed that XX chromosome complement in combination with a high-fat diet led to enhanced weight gain in the presence of male or female gonads. We identified the genomic dosage of Kdm5c, an X chromosome gene that escapes X chromosome inactivation, as a determinant of the X chromosome effect on adiposity. Modulating Kdm5c gene dosage in XX female mice to levels that are normally present in males resulted in reduced body weight, fat content, and food intake to a degree similar to that seen with altering the entire X chromosome dosage. In cultured preadipocytes, the levels of KDM5C histone demethylase influenced chromatin accessibility (ATAC-Seq), gene expression (RNA-Seq), and adipocyte differentiation. Both in vitro and in vivo, Kdm5c dosage influenced gene expression involved in extracellular matrix remodeling, which is critical for adipocyte differentiation and adipose tissue expansion. In humans, adipose tissue KDM5C mRNA levels and KDM5C genetic variants were associated with body mass. These studies demonstrate that the sex-dependent dosage of Kdm5c contributes to male/female differences in adipocyte biology and highlight X-escape genes as a critical component of female physiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI140223DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598065PMC
November 2020

Multi-Ethnic Genome-Wide Association Study of Decomposed Cardioelectric Phenotypes Illustrates Strategies to Identify and Characterize Evidence of Shared Genetic Effects for Complex Traits.

Circ Genom Precis Med 2020 08 30;13(4):e002680. Epub 2020 Jun 30.

Gillings School of Global Public Health (A.R.B., H.M.H., R.G., M.G., C.J.H., A.A.S., E.A.W., K.E.N., C.L.A.), University of North Carolina at Chapel Hill.

Background: We examined how expanding electrocardiographic trait genome-wide association studies to include ancestrally diverse populations, prioritize more precise phenotypic measures, and evaluate evidence for shared genetic effects enabled the detection and characterization of loci.

Methods: We decomposed 10 seconds, 12-lead electrocardiograms from 34 668 multi-ethnic participants (15% Black; 30% Hispanic/Latino) into 6 contiguous, physiologically distinct (P wave, PR segment, QRS interval, ST segment, T wave, and TP segment) and 2 composite, conventional (PR interval and QT interval) interval scale traits and conducted multivariable-adjusted, trait-specific univariate genome-wide association studies using 1000-G imputed single-nucleotide polymorphisms. Evidence of shared genetic effects was evaluated by aggregating meta-analyzed univariate results across the 6 continuous electrocardiographic traits using the combined phenotype adaptive sum of powered scores test.

Results: We identified 6 novels (, and ) and 87 known loci (adaptive sum of powered score test <5×10). Lead single-nucleotide polymorphism rs3211938 at was common in Blacks (minor allele frequency=10%), near monomorphic in European Americans, and had effects on the QT interval and TP segment that ranked among the largest reported to date for common variants. The other 5 novel loci were observed when evaluating the contiguous but not the composite electrocardiographic traits. Combined phenotype testing did not identify novel electrocardiographic loci unapparent using traditional univariate approaches, although this approach did assist with the characterization of known loci.

Conclusions: Despite including one-third as many participants as published electrocardiographic trait genome-wide association studies, our study identified 6 novel loci, emphasizing the importance of ancestral diversity and phenotype resolution in this era of ever-growing genome-wide association studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.119.002680DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520945PMC
August 2020

Role of Rare and Low-Frequency Variants in Gene-Alcohol Interactions on Plasma Lipid Levels.

Circ Genom Precis Med 2020 08 8;13(4):e002772. Epub 2020 Jun 8.

Department of Epidemiology, School of Public Health (L.F.B., J.A.S., W.Z., S.L.R.K.), University of Michigan, Ann Arbor, MI.

Background: Alcohol intake influences plasma lipid levels, and such effects may be moderated by genetic variants. We aimed to characterize the role of aggregated rare and low-frequency protein-coding variants in gene by alcohol consumption interactions associated with fasting plasma lipid levels.

Methods: In the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, fasting plasma triglycerides and high- and low-density lipoprotein cholesterol were measured in 34 153 individuals with European ancestry from 5 discovery studies and 32 277 individuals from 6 replication studies. Rare and low-frequency functional protein-coding variants (minor allele frequency, ≤5%) measured by an exome array were aggregated by genes and evaluated by a gene-environment interaction test and a joint test of genetic main and gene-environment interaction effects. Two dichotomous self-reported alcohol consumption variables, current drinker, defined as any recurrent drinking behavior, and regular drinker, defined as the subset of current drinkers who consume at least 2 drinks per week, were considered.

Results: We discovered and replicated 21 gene-lipid associations at 13 known lipid loci through the joint test. Eight loci (, , , , , , , and ) remained significant after conditioning on the common index single-nucleotide polymorphism identified by previous genome-wide association studies, suggesting an independent role for rare and low-frequency variants at these loci. One significant gene-alcohol interaction on triglycerides in a novel locus was significantly discovered (=6.65×10 for the interaction test) and replicated at nominal significance level (=0.013) in .

Conclusions: In conclusion, this study applied new gene-based statistical approaches and suggested that rare and low-frequency genetic variants interacted with alcohol consumption on lipid levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.119.002772DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442680PMC
August 2020

Identification of type 2 diabetes loci in 433,540 East Asian individuals.

Nature 2020 06 6;582(7811):240-245. Epub 2020 May 6.

Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.

Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D); however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes-NKX6-3 and ANK1-in different tissues. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2263-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292783PMC
June 2020