Am J Psychiatry 2021 01 16;178(1):65-76. Epub 2020 Jun 16.
Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai (Zhan, Wang); University of Chinese Academy of Sciences, Beijing (Zhan, Wang); School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing (Wei); Institute of Automation, Center for Excellence in Brain Science and Intelligence Technology, National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Beijing (Wei, Liang, He); Department of Child Health Care, Children's Hospital of Fudan University, Shanghai (Xu); Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, U.K. (Robbins); Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai (Robbins); Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai (Wang); and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China (Wang).
Objective: Psychiatric disorders commonly comprise comorbid symptoms, such as autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD), and attention deficit hyperactivity disorder (ADHD), raising controversies over accurate diagnosis and overlap of their neural underpinnings. The authors used noninvasive neuroimaging in humans and nonhuman primates to identify neural markers associated with DSM-5 diagnoses and quantitative measures of symptom severity.
Methods: Resting-state functional connectivity data obtained from both wild-type and methyl-CpG binding protein 2 () transgenic monkeys were used to construct monkey-derived classifiers for diagnostic classification in four human data sets (ASD: Autism Brain Imaging Data Exchange [ABIDE-I], N=1,112; ABIDE-II, N=1,114; ADHD-200 sample: N=776; OCD local institutional database: N=186). Stepwise linear regression models were applied to examine associations between functional connections of monkey-derived classifiers and dimensional symptom severity of psychiatric disorders.
Results: Nine core regions prominently distributed in frontal and temporal cortices were identified in monkeys and used as seeds to construct the monkey-derived classifier that informed diagnostic classification in human autism. This same set of core regions was useful for diagnostic classification in the OCD cohort but not the ADHD cohort. Models based on functional connections of the right ventrolateral prefrontal cortex with the left thalamus and right prefrontal polar cortex predicted communication scores of ASD patients and compulsivity scores of OCD patients, respectively.
Conclusions: The identified core regions may serve as a basis for building markers for ASD and OCD diagnoses, as well as measures of symptom severity. These findings may inform future development of machine-learning models for psychiatric disorders and may improve the accuracy and speed of clinical assessments.