Publications by authors named "Xiao-Na Peng"

2 Publications

  • Page 1 of 1

Cognitive enhancement and neuroprotective effects of OABL, a sesquiterpene lactone in 5xFAD Alzheimer's disease mice model.

Redox Biol 2022 Jan 8;50:102229. Epub 2022 Jan 8.

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China. Electronic address:

Alzheimer's disease (AD) is a neurodegenerative disease in which oxidative stress and neuroinflammation were demonstrated to be associated with neuronal loss and cognitive deficits. However, there are still no specific treatments that can prevent the progression of AD. In this study, a screening of anti-inflammatory hits from 4207 natural compounds of two different molecular libraries indicated 1,6-O,O-diacetylbritannilactone (OABL), a 1,10-seco-eudesmane sesquiterpene lactone isolated from the herb Inula britannica L., exhibited strong anti-inflammatory activity in vitro as well as favorable BBB penetration property. OABL reduced LPS-induced neuroinflammation in BV-2 microglial cells as assessed by effects on the levels of inflammatory mediators including NO, PGE, TNF-α, iNOS, and COX-2, as well as the translocation of NF-κB. Besides, OABL also exhibited pronounced neuroprotective effects against oxytosis and ferroptosis in the rat pheochromocytoma PC12 cell line. For in vivo research, OABL (20 mg/kg B.W., i.p.) for 21 d attenuated the impairments in cognitive function observed in 6-month-old 5xFAD mice, as assessed with the Morris water maze test. OABL restored neuronal damage and postsynaptic density protein 95 (PSD95) expression in the hippocampus. OABL also significantly reduced the accumulation of amyloid plaques, the Aβ expression, the phosphorylation of Tau protein, and the expression of BACE1 in AD mice brain. In addition, OABL attenuated the overactivation of microglia and astrocytes by suppressing the expressions of inflammatory cytokines, and increased glutathione (GSH) and reduced malondialdehyde (MDA) and super oxide dismutase (SOD) levels in the 5xFAD mice brain. In conclusion, these results highlight the beneficial effects of the natural product OABL as a novel treatment with potential application for drug discovery in AD due to its pharmacological profile.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.redox.2022.102229DOI Listing
January 2022

Chemical characterization and multifunctional neuroprotective effects of sesquiterpenoid-enriched Inula britannica flowers extract.

Bioorg Chem 2021 11 28;116:105389. Epub 2021 Sep 28.

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, PR China. Electronic address:

Dried flowers of Inula britannica commercially serve as pharmaceutical/nutraceutical herbs in the manufacture of medicinal products and functional tea that has been reported to possess extensive biological property. However, the neuroprotective constituents in I. britannica flowers are not known. In the current study, phytochemicals of sesquiterpenoid-enriched I. britannica flowers extract and their potential multifunctional neuroprotective effects were investigated. Nineteen structurally diverse sesquiterpenoids, including two new sesquiterpenoid dimers, namely, inubritanolides A and B (1, 2), and four new sesquiterpenoid monomers (3-6), namely, 1-O-acetyl-6-O-chloracetylbritannilactone (3), 6-methoxybritannilactone (4), 1-hydroxy-10β-methoxy-4αH-1,10-secoeudesma-5(6),11(13)-dien-12,8β-olide (5) and 1-hydroxy-4αH-1,10-secoeudesma-5(6),10(14),11(13)-trien-12,8β-olide (6), as well as 13 known congeners (7-19) were isolated from this source. The structures of compounds 1-6 were elucidated by 1D- and 2D- NMR and HR-ESI-MS data, and their absolute configurations were discerned by electronic circular dichroism (ECD) data analysis and single crystal X-ray diffraction. Interestingly, inubritannolide A (1) is a new type [4 + 2] Diels-Alder dimer featuring a hepta-membered cycloether skeleton. Most of the compounds showed potential multifunctional neuroprotective effects, including antioxidative, anti-neuroinflammatory, and microglial polarization properties. Specifically, 1 and 6 displayed slight strong neuroprotective potency against different types of neuronal cells mediated by various inducers including HO, 6-hydroxydopamine (6-OHDA), and lipopolysaccharide (LPS). Overall, this is the first report on multifunctional neuroprotective effects of sesquiterpenoid-enriched I. britannica flowers extract, which supports its potential pharmaceutical/nutraceutical application in neurodegenerative diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2021.105389DOI Listing
November 2021
-->