Publications by authors named "X N Li"

109,875 Publications

Removal of trace DNA toxic compounds using a Poly(deep eutectic solvent)@Biomass based on multi-physical interactions.

J Hazard Mater 2021 Jun 9;418:126369. Epub 2021 Jun 9.

College of Pharmaceutical Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China. Electronic address:

DNA toxic compounds (DNA-T-Cs), even in trace amounts, seriously threaten human health and must be completely eliminated. However, the currently used separation media face great challenges in removing trace DNA-T-Cs. Based on the functional advantages of deep eutectic solvents (DESs) and the natural features of biomass (BioM), a series of Poly(DES)@BioMs functioning as adsorbents were prepared for the removal of aromatic/hetero-atomic DNA-T-Cs at the ppm level. After optimisation of experimental conditions, the removal efficiency for DNA-T-Cs ranged from 92.4% to 96.0% with an initial concentration of 20.0 ppm, a temperature of 30 °C, duration of 30 min, and pH of 7.0. The removal processes between the DNA-T-Cs and Poly(DES)@BioMs are well described in the Temkin equilibrium and second-order kinetic adsorption models, and the desorption processes are well shown in the Korsmeryer-Peppas equilibrium and zero-order kinetic models. Molecular simulations revealed that the removal interactions include hydrogen bonding, π-π stacking, and hydrophobic/hydrophilic effects. The removal efficiency for the DNA-T-Cs at 8.0 ppm in industrial sewage ranged from 69.7% to 102%, while the removal efficiency for the DNA-T-Cs standing alone at 20.0 ppm in a methyl violet drug solution was 95.4%, confirming that the Poly(DES)@BioMs effectively removed trace DNA-T-Cs in field samples.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.126369DOI Listing
June 2021

Peroxiredomin-4 ameliorates lipotoxicity-induced oxidative stress and apoptosis in diabetic cardiomyopathy.

Biomed Pharmacother 2021 Jun 12;141:111780. Epub 2021 Jun 12.

Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China. Electronic address:

Diabetic cardiomyopathy (DCM), one severe complication in the diabetes, leads to high mortality in the diabetic patients. However, the understanding of molecular mechanisms underlying DCM is far from completion. Herein, we investigated the disease-related differences in the proteomes of DCM based on db/db mice and verified the protective roles of peroxiredoxin-4 (Prdx4) in H9c2 cardiomyocytes treated by palmitic acid (PA). Fasting blood glucose (FBG) and cardiac function was detected in the 6-month-old control and diabetic mice. The hearts were then collected and analyzed by a coupled label-free and mass spectrometry approach. In vivo investigation indicated that body weight and FBG of db/db mice markedly increased, and diabetic heart exhibited obvious cardiac hypertrophy and lipid droplet accumulation, and cardiac dysfunction as is indicated by the increases of left ventricle posterior wall thickness in systole (LVPWd) and diastole (LVPWs), and reduction of fractional shortening (FS). We used proteomic analysis and then detected a grand total of 2636 proteins. 175 differentially expressed proteins (DEPs) were markedly detected in the diabetic heart. Thereinto, Prdx4 was markedly down-regulated in the diabetic heart. In vitro experiments revealed that 250 μM PA significantly inhibited viability of H9c2 cell. PA induced much accumulation of lipid droplet in cardiomyocytes and resulted in an increase of mRNA expressions of lipogenic genes (FASN and SCD1) and cardiac hypertrophic genes. Additionally, protein level of Prdx4 evidently reduced in the PA-treated H9c2 cell. It was further found that shRNA-mediated Prdx4 knockdown exacerbated PA-induced oxidative stress and cardiomyocyte apoptosis, whereas overexpressing Prdx4 in the H9c2 cells noteworthily limited PA-induced ROS generation and cardiomyocytes apoptosis. These data collectively reveal the essential role of abnormal Prdx4 in pathological alteration of DCM, and provide potentially therapeutic target for the prevention of DCM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2021.111780DOI Listing
June 2021

Mesenchyme homeobox 1 mediated-promotion of osteoblastic differentiation is negatively regulated by mir-3064-5p.

Differentiation 2021 Jun 10;120:19-27. Epub 2021 Jun 10.

Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266000, Shandong, China. Electronic address:

Human mesenchymal stem cells (hMSCs) are multipotent cells that can be differentiated into different cell types including osteoblasts. Herein we aimed to assess the regulation of transcription factor mesenchyme homeobox 1 (Meox1) in the osteogenic differentiation of hMSCs and to determine the microRNA which targets on Meox1. Total RNA was extracted from the isolated ligamentum flavum tissue samples and cultured hMSCs, and the expression of Meox1 was assessed by RT-PCR and Western blot assays. Cultured hMSCs were induced towards osteoblastic differentiation, and the osteoblast phenotype was determined by alkaline phosphatase activity and alizarin red staining. The microRNA targeting on the 3'-UTR of Meox1was predicted using bioinformatics tool, and the binding was validated by luciferase and RNA pulldown assays. The osteoblastic differentiation of hMSCs was checked with the knockdown of Meox1 and microRNA inhibitors. Higher expression of Meox1, and lower expression of miR-3064-5p in ossified ligamentum flavum (OLF) tissues were identified. In addition, increased expression along with the osteoblastic differentiation of hMSCs was found. Further research revealed that Meox was a direct target of miR-3064-5p, when the former promoted the differentiation of hMSCs into osteoblasts, the latter significantly suppressed the osteogenesis. The expression of Meox1 increased gradually with the osteoblastic differentiation of hMSCs, during which miR-3064-5p decreased. Meox1 is a direct target of miR-3064-5p, and they both play important roles in the osteogenesis. These findings provide potential target for the development of therapeutic drugs for skeletal system diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diff.2021.05.002DOI Listing
June 2021

Effective elastic modulus of an intact cornea related to indentation behavior: A comparison between the Hertz model and Johnson-Kendall-Roberts model.

Exp Eye Res 2021 Jun 12:108670. Epub 2021 Jun 12.

College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China; State Key Lab. of Traction Power, Southwest Jiaotong University, Chengdu, China. Electronic address:

In this study, a macro-indentation test on the submillimeter scale was performed to analyze the indentation behavior of an intact cornea under physiological pressures. The Hertz and Johnson-Kendall-Roberts (JKR) models were employed to solve the elastic modulus (E) of the intact cornea. The relevant detailed analysis showed that the JKR model, which accounted for the contribution from the adhesion energy, could be used to obtain the E values that were more than two-folds of those obtained from the Hertz model, which only considered the external force. Compared with the uniaxial tension test in vitro, unlike the elastic Hertz-model, the E values under physiological pressures that were obtained with the JKR model were between the lower and upper limits of corneal material. This phenomenon indicated that the JKR model could be used to obtain reasonably effective E values of an intact cornea under physiological pressures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2021.108670DOI Listing
June 2021

Two-dimensional vector accelerometer based on orthogonal Bragg gratings inscribed in a standard single-mode fiber cladding.

Opt Lett 2021 Jun;46(12):2992-2995

We propose and demonstrate a novel, to the best of our knowledge, two-dimensional vector accelerometer based on orthogonal cladding fiber Bragg gratings (FBGs) inscribed in a standard single-mode fiber (SMF). The cladding FBGs are written by a femtosecond laser point-by-point technique and run parallel with the core. We experimentally demonstrate that the two orthogonal components of acceleration can be directly detected using simplified power-referenced detection. Using this structure, we can simultaneously obtain orientation information and acceleration in a SMF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.428333DOI Listing
June 2021