Publications by authors named "Wuji Zhang"

6 Publications

  • Page 1 of 1

CD8 T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity.

Immunity 2021 05 15;54(5):1066-1082.e5. Epub 2021 Apr 15.

Department of Infectious Diseases, Austin Hospital, Heidelberg, VIC 3084, Australia; Department of Medicine and Radiology, The University of Melbourne, Parkville, VIC 3000, Australia; Data Analytics Research and Evaluation (DARE) Centre, Austin Health and The University of Melbourne, Heidelberg, VIC 3084, Australia.

To better understand primary and recall T cell responses during coronavirus disease 2019 (COVID-19), it is important to examine unmanipulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells. By using peptide-human leukocyte antigen (HLA) tetramers for direct ex vivo analysis, we characterized CD8 T cells specific for SARS-CoV-2 epitopes in COVID-19 patients and unexposed individuals. Unlike CD8 T cells directed toward subdominant epitopes (B7/N, A2/S, and A24/S) CD8 T cells specific for the immunodominant B7/N epitope were detected at high frequencies in pre-pandemic samples and at increased frequencies during acute COVID-19 and convalescence. SARS-CoV-2-specific CD8 T cells in pre-pandemic samples from children, adults, and elderly individuals predominantly displayed a naive phenotype, indicating a lack of previous cross-reactive exposures. T cell receptor (TCR) analyses revealed diverse TCRαβ repertoires and promiscuous αβ-TCR pairing within B7/NCD8 T cells. Our study demonstrates high naive precursor frequency and TCRαβ diversity within immunodominant B7/N-specific CD8 T cells and provides insight into SARS-CoV-2-specific T cell origins and subsequent responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2021.04.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049468PMC
May 2021

Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial.

Lancet Infect Dis 2021 Apr 19. Epub 2021 Apr 19.

Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.

Background: Given the scale of the ongoing COVID-19 pandemic, the development of vaccines based on different platforms is essential, particularly in light of emerging viral variants, the absence of information on vaccine-induced immune durability, and potential paediatric use. We aimed to assess the safety and immunogenicity of an MF59-adjuvanted subunit vaccine for COVID-19 based on recombinant SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a novel molecular clamp (spike glycoprotein-clamp [sclamp]).

Methods: We did a phase 1, double-blind, placebo-controlled, block-randomised trial of the sclamp subunit vaccine in a single clinical trial site in Brisbane, QLD, Australia. Healthy adults (aged ≥18 to ≤55 years) who had tested negative for SARS-CoV-2, reported no close contact with anyone with active or previous SARS-CoV-2 infection, and tested negative for pre-existing SARS-CoV-2 immunity were included. Participants were randomly assigned to one of five treatment groups and received two doses via intramuscular injection 28 days apart of either placebo, sclamp vaccine at 5 μg, 15 μg, or 45 μg, or one dose of sclamp vaccine at 45 μg followed by placebo. Participants and study personnel, except the dose administration personnel, were masked to treatment. The primary safety endpoints included solicited local and systemic adverse events in the 7 days after each dose and unsolicited adverse events up to 12 months after dosing. Here, data are reported up until day 57. Primary immunogenicity endpoints were antigen-specific IgG ELISA and SARS-CoV-2 microneutralisation assays assessed at 28 days after each dose. The study is ongoing and registered with ClinicalTrials.gov, NCT04495933.

Findings: Between June 23, 2020, and Aug 17, 2020, of 314 healthy volunteers screened, 120 were randomly assigned (n=24 per group), and 114 (95%) completed the study up to day 57 (mean age 32·5 years [SD 10·4], 65 [54%] male, 55 [46%] female). Severe solicited reactions were infrequent and occurred at similar rates in participants receiving placebo (two [8%] of 24) and the SARS-CoV-2 sclamp vaccine at any dose (three [3%] of 96). Both solicited reactions and unsolicited adverse events occurred at a similar frequency in participants receiving placebo and the SARS-CoV-2 sclamp vaccine. Solicited reactions occurred in 19 (79%) of 24 participants receiving placebo and 86 (90%) of 96 receiving the SARS-CoV-2 sclamp vaccine at any dose. Unsolicited adverse events occurred in seven (29%) of 24 participants receiving placebo and 35 (36%) of 96 participants receiving the SARS-CoV-2 sclamp vaccine at any dose. Vaccination with SARS-CoV-2 sclamp elicited a similar antigen-specific response irrespective of dose: 4 weeks after the initial dose (day 29) with 5 μg dose (geometric mean titre [GMT] 6400, 95% CI 3683-11 122), with 15 μg dose (7492, 4959-11 319), and the two 45 μg dose cohorts (8770, 5526-13 920 in the two-dose 45 μg cohort; 8793, 5570-13 881 in the single-dose 45 μg cohort); 4 weeks after the second dose (day 57) with two 5 μg doses (102 400, 64 857-161 676), with two 15 μg doses (74 725, 51 300-108 847), with two 45 μg doses (79 586, 55 430-114 268), only a single 45 μg dose (4795, 2858-8043). At day 57, 67 (99%) of 68 participants who received two doses of sclamp vaccine at any concentration produced a neutralising immune response, compared with six (25%) of 24 who received a single 45 μg dose and none of 22 who received placebo. Participants receiving two doses of sclamp vaccine elicited similar neutralisation titres, irrespective of dose: two 5 μg doses (GMT 228, 95% CI 146-356), two 15 μg doses (230, 170-312), and two 45 μg doses (239, 187-307).

Interpretation: This first-in-human trial shows that a subunit vaccine comprising mammalian cell culture-derived, MF59-adjuvanted, molecular clamp-stabilised recombinant spike protein elicits strong immune responses with a promising safety profile. However, the glycoprotein 41 peptide present in the clamp created HIV diagnostic assay interference, a possible barrier to widespread use highlighting the criticality of potential non-spike directed immunogenicity during vaccine development. Studies are ongoing with alternative molecular clamp trimerisation domains to ameliorate this response.

Funding: Coalition for Epidemic Preparedness Innovations, National Health and Medical Research Council, Queensland Government, and further philanthropic sources listed in the acknowledgments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1473-3099(21)00200-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055208PMC
April 2021

Robust correlations across six SARS-CoV-2 serology assays detecting distinct antibody features.

Clin Transl Immunology 2021 28;10(3):e1258. Epub 2021 Feb 28.

Department of Microbiology and Immunology University of Melbourne, at the Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia.

Objectives: As the world transitions into a new era of the COVID-19 pandemic in which vaccines become available, there is an increasing demand for rapid reliable serological testing to identify individuals with levels of immunity considered protective by infection or vaccination.

Methods: We used 34 SARS-CoV-2 samples to perform a rapid surrogate virus neutralisation test (sVNT), applicable to many laboratories as it circumvents the need for biosafety level-3 containment. We correlated results from the sVNT with five additional commonly used SARS-CoV-2 serology techniques: the microneutralisation test (MNT), in-house ELISAs, commercial Euroimmun- and Wantai-based ELISAs (RBD, spike and nucleoprotein; IgG, IgA and IgM), antigen-binding avidity, and high-throughput multiplex analyses to profile isotype, subclass and Fc effector binding potential. We correlated antibody levels with antibody-secreting cell (ASC) and circulatory T follicular helper (cTfh) cell numbers.

Results: Antibody data obtained with commercial ELISAs closely reflected results using in-house ELISAs against RBD and spike. A correlation matrix across ten measured ELISA parameters revealed positive correlations for all factors. The frequency of inhibition by rapid sVNT strongly correlated with spike-specific IgG and IgA titres detected by both commercial and in-house ELISAs, and MNT titres. Multiplex analyses revealed strongest correlations between IgG, IgG1, FcR and C1q specific to spike and RBD. Acute cTfh-type 1 cell numbers correlated with spike and RBD-specific IgG antibodies measured by ELISAs and sVNT.

Conclusion: Our comprehensive analyses provide important insights into SARS-CoV-2 humoral immunity across distinct serology assays and their applicability for specific research and/or diagnostic questions to assess SARS-CoV-2-specific humoral responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cti2.1258DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916820PMC
February 2021

Integrated immune dynamics define correlates of COVID-19 severity and antibody responses.

Cell Rep Med 2021 Mar 5;2(3):100208. Epub 2021 Feb 5.

Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia.

SARS-CoV-2 causes a spectrum of COVID-19 disease, the immunological basis of which remains ill defined. We analyzed 85 SARS-CoV-2-infected individuals at acute and/or convalescent time points, up to 102 days after symptom onset, quantifying 184 immunological parameters. Acute COVID-19 presented with high levels of IL-6, IL-18, and IL-10 and broad activation marked by the upregulation of CD38 on innate and adaptive lymphocytes and myeloid cells. Importantly, activated CXCR3cT1 cells in acute COVID-19 significantly correlate with and predict antibody levels and their avidity at convalescence as well as acute neutralization activity. Strikingly, intensive care unit (ICU) patients with severe COVID-19 display higher levels of soluble IL-6, IL-6R, and IL-18, and hyperactivation of innate, adaptive, and myeloid compartments than patients with moderate disease. Our analyses provide a comprehensive map of longitudinal immunological responses in COVID-19 patients and integrate key cellular pathways of complex immune networks underpinning severe COVID-19, providing important insights into potential biomarkers and immunotherapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xcrm.2021.100208DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862905PMC
March 2021

Suboptimal SARS-CoV-2-specific CD8 T cell response associated with the prominent HLA-A*02:01 phenotype.

Proc Natl Acad Sci U S A 2020 09 10;117(39):24384-24391. Epub 2020 Sep 10.

Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia;

An improved understanding of human T cell-mediated immunity in COVID-19 is important for optimizing therapeutic and vaccine strategies. Experience with influenza shows that infection primes CD8 T cell memory to peptides presented by common HLA types like HLA-A2, which enhances recovery and diminishes clinical severity upon reinfection. Stimulating peripheral blood mononuclear cells from COVID-19 convalescent patients with overlapping peptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the clonal expansion of SARS-CoV-2-specific CD8 and CD4 T cells in vitro, with CD4 T cells being robust. We identified two HLA-A*02:01-restricted SARS-CoV-2-specfic CD8 T cell epitopes, A2/S and A2/Orf1ab Using peptide-HLA tetramer enrichment, direct ex vivo assessment of A2/SCD8 and A2/Orf1abCD8 populations indicated that A2/SCD8 T cells were detected at comparable frequencies (∼1.3 × 10) in acute and convalescent HLA-A*02:01 patients. These frequencies were higher than those found in uninfected HLA-A*02:01 donors (∼2.5 × 10), but low when compared to frequencies for influenza-specific (A2/M1) and Epstein-Barr virus (EBV)-specific (A2/BMLF) (∼1.38 × 10) populations. Phenotyping A2/SCD8 T cells from COVID-19 convalescents ex vivo showed that A2/SCD8 T cells were predominantly negative for CD38, HLA-DR, PD-1, and CD71 activation markers, although the majority of total CD8 T cells expressed granzymes and/or perforin. Furthermore, the bias toward naïve, stem cell memory and central memory A2/SCD8 T cells rather than effector memory populations suggests that SARS-CoV-2 infection may be compromising CD8 T cell activation. Priming with appropriate vaccines may thus be beneficial for optimizing CD8 T cell immunity in COVID-19.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2015486117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7533701PMC
September 2020

Insights into the Biogenic Amine Metabolic Landscape during Industrial Semidry Chinese Rice Wine Fermentation.

J Agric Food Chem 2016 Oct 22;64(39):7385-7393. Epub 2016 Sep 22.

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi, Jiangsu 214122, P.R. China.

Inspired by concerns about food safety, the metabolic landscape of biogenic amines (BAs) was elucidated during industrial semidry Chinese rice wine fermentation. The main fermentation process represented the largest contribution to BA formation, which corresponded to 69.1% (54.3 mg/L). Principal component analysis revealed that total acid and ethanol were strongly correlated with BAs, indicating that BA formation favored acidic and stressful conditions. Other than putrescine (PUT), spermidine (SPD), and spermine (SPM), 5 BAs exhibited strong relationships with the precursor amino acids (R > 0.85). PUT was mainly decarboxylated from arginine (89.6%) whereas SPD (100%) and SPM (83.1%) were obtained from ornithine. Interestingly, some SPD could convert back to PUT (24.3%). All 8 BAs showed good relationships with lactic acid bacteria (LAB) (R around 0.75). Moreover, among the five main LAB genera, Lactobacillus had a positive correlation with BA formation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.6b01523DOI Listing
October 2016