Publications by authors named "William B Dobyns"

270 Publications

NRF1 association with AUTS2-Polycomb mediates specific gene activation in the brain.

Mol Cell 2021 Oct 6. Epub 2021 Oct 6.

Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Electronic address:

The heterogeneous family of complexes comprising Polycomb repressive complex 1 (PRC1) is instrumental for establishing facultative heterochromatin that is repressive to transcription. However, two PRC1 species, ncPRC1.3 and ncPRC1.5, are known to comprise novel components, AUTS2, P300, and CK2, that convert this repressive function to that of transcription activation. Here, we report that individuals harboring mutations in the HX repeat domain of AUTS2 exhibit defects in AUTS2 and P300 interaction as well as a developmental disorder reflective of Rubinstein-Taybi syndrome, which is mainly associated with a heterozygous pathogenic variant in CREBBP/EP300. Moreover, the absence of AUTS2 or mutation in its HX repeat domain gives rise to misregulation of a subset of developmental genes and curtails motor neuron differentiation of mouse embryonic stem cells. The transcription factor nuclear respiratory factor 1 (NRF1) has a novel and integral role in this neurodevelopmental process, being required for ncPRC1.3 recruitment to chromatin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2021.09.020DOI Listing
October 2021

Multidisciplinary interaction and MCD gene discovery. The perspective of the clinical geneticist.

Eur J Paediatr Neurol 2021 Sep 22;35:27-34. Epub 2021 Sep 22.

Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam.

The increasing pace of gene discovery in the last decade has brought a major change in the way the genetic causes of brain malformations are being diagnosed. Unbiased genomic screening has gained the first place in the diagnostic protocol of a child with congenital (brain) anomalies and the detected variants are matched with the phenotypic presentation afterwards. This process is defined as "reverse phenotyping". Screening of DNA, through copy number variant analysis of microarrays and analysis of exome data on different platforms, obtained from the index patient and both parents has become a routine approach in many centers worldwide. Clinicians are used to multidisciplinary team interaction in patient care and disease management and this explains why the majority of research that has led to the discovery of new genetic disorders nowadays proceeds from clinical observations to genomic analysis and to data exchange facilitated by open access sharing databases. However, the relevance of multidisciplinary team interaction has not been object of systematic research in the field of brain malformations. This review will illustrate some examples of how diagnostically driven questions through multidisciplinary interaction, among clinical and preclinical disciplines, can be successful in the discovery of new genes related to brain malformations. The first example illustrates the setting of interaction among neurologists, geneticists and neuro-radiologists. The second illustrates the importance of interaction among clinical dysmorphologists for pattern recognition of syndromes with multiple congenital anomalies. The third example shows how fruitful it can be to step out of the "clinical comfort zone", and interact with basic scientists in applying emerging technologies to solve the diagnostic puzzles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpn.2021.09.006DOI Listing
September 2021

Expanding the KIF4A-associated phenotype.

Am J Med Genet A 2021 Aug 3. Epub 2021 Aug 3.

Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.

Kinesin super family (KIF) genes encode motor kinesins, a family of evolutionary conserved proteins, involved in intracellular trafficking of various cargoes. These proteins are critical for various physiological processes including neuron function and survival, ciliary function and ciliogenesis, and cell-cycle progression. Recent evidence suggests that alterations in motor kinesin genes can lead to a variety of human diseases, including monogenic disorders. Neuropathies, impaired higher brain functions, structural brain abnormalities and multiple congenital anomalies (i.e., renal, urogenital, and limb anomalies) can result from pathogenic variants in many KIF genes. We expand the phenotype associated with KIF4A variants from developmental delay and intellectual disability with or without epilepsy to a congenital anomaly phenotype with hydrocephalus and various brain anomalies at the more severe end of phenotypic manifestations. Additional anomalies of the kidneys and urinary tract, congenital lymphedema, eye, and dental anomalies seem to be variably associated and overlap with clinical signs observed in other kinesinopathies. Caution still applies to missense variants, but hopefully, future work will further establish genotype-phenotype correlations in a larger number of patients and functional studies may give further insights into the complex function of KIF4A.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62443DOI Listing
August 2021

The Names of Things: The 2018 Bernard Sachs Lecture.

Authors:
William B Dobyns

Pediatr Neurol 2021 Sep 30;122:41-49. Epub 2021 Jun 30.

Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota. Electronic address:

In 2018, I was honored to receive the Bernard Sachs Award for a lifetime of work expanding knowledge of diverse neurodevelopmental disorders. Summarizing work over more than 30 years is difficult but is an opportunity to chronicle the dramatic changes in the medical and scientific world that have transformed the field of Child Neurology over this time, as reflected in my own work. Here I have chosen to highlight five broad themes of my research beginning with my interest in descriptive terms that drive wider understanding and my choice for the title of this review. From there I will go on to contrast the state of knowledge as I entered the field with the state of knowledge today for four human brain malformations-lissencephaly, megalencephaly, cerebellar malformations, and polymicrogyria. For all, the changes have been dramatic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pediatrneurol.2021.05.006DOI Listing
September 2021

Spatial and cell type transcriptional landscape of human cerebellar development.

Nat Neurosci 2021 08 17;24(8):1163-1175. Epub 2021 Jun 17.

Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.

The human neonatal cerebellum is one-fourth of its adult size yet contains the blueprint required to integrate environmental cues with developing motor, cognitive and emotional skills into adulthood. Although mature cerebellar neuroanatomy is well studied, understanding of its developmental origins is limited. In this study, we systematically mapped the molecular, cellular and spatial composition of human fetal cerebellum by combining laser capture microscopy and SPLiT-seq single-nucleus transcriptomics. We profiled functionally distinct regions and gene expression dynamics within cell types and across development. The resulting cell atlas demonstrates that the molecular organization of the cerebellar anlage recapitulates cytoarchitecturally distinct regions and developmentally transient cell types that are distinct from the mouse cerebellum. By mapping genes dominant for pediatric and adult neurological disorders onto our dataset, we identify relevant cell types underlying disease mechanisms. These data provide a resource for probing the cellular basis of human cerebellar development and disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41593-021-00872-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8338761PMC
August 2021

Proximal variants in CCND2 associated with microcephaly, short stature, and developmental delay: A case series and review of inverse brain growth phenotypes.

Am J Med Genet A 2021 09 4;185(9):2719-2738. Epub 2021 Jun 4.

Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA.

Cyclin D2 (CCND2) is a critical cell cycle regulator and key member of the cyclin D2-CDK4 (DC) complex. De novo variants of CCND2 clustering in the distal part of the protein have been identified as pathogenic causes of brain overgrowth (megalencephaly, MEG) and severe cortical malformations in children including the megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome. Megalencephaly-associated CCND2 variants are localized to the terminal exon and result in accumulation of degradation-resistant protein. We identified five individuals from three unrelated families with novel variants in the proximal region of CCND2 associated with microcephaly, mildly simplified cortical gyral pattern, symmetric short stature, and mild developmental delay. Identified variants include de novo frameshift variants and a dominantly inherited stop-gain variant segregating with the phenotype. This is the first reported association between proximal CCND2 variants and microcephaly, to our knowledge. This series expands the phenotypic spectrum of CCND2-related disorders and suggests that distinct classes of CCND2 variants are associated with reciprocal effects on human brain growth (microcephaly and megalencephaly due to possible loss or gain of protein function, respectively), adding to the growing paradigm of inverse phenotypes due to dysregulation of key brain growth genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62362DOI Listing
September 2021

Biallelic Variants Are Associated With Mild Lissencephaly and Cerebellar Hypoplasia.

Neurol Genet 2021 Apr 21;7(2):e558. Epub 2021 Jan 21.

Department of Clinical Genetics (D.J.S., R.S., M.W., M.S., G.M.S.M.), ErasmusMC University Medical Center Rotterdam; Department of Child Neurology (M.C.Y.W.) and Department of Radiology (M.H.G.D.), Sophia Children's Hospital, ErasmusMC University Medical Center Rotterdam, the Netherlands; Department of Pediatrics (W.B.D.), University of Washington; Department of Neurology (W.B.D.), University of Washington, Seattle; Center for Integrative Brain Research (W.B.D.), Seattle Children's Research Institute, WA; Department of Human Genetics (W.B.D.), University of Minnesota, Minneapolis; Department of Radiology and Biomedical Imaging (A.J.B.), University of California, San Francisco; and ENCORE Expertise Center for Neurodevelopmental Disorders (M.C.Y.W., M.H.G.D., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, the Netherlands.

Objective: We aimed to identify pathogenic variants in a girl with epilepsy, developmental delay, cerebellar ataxia, oral motor difficulty, and structural brain abnormalities with the use of whole-exome sequencing.

Methods: Whole-exome trio analysis and molecular functional studies were performed in addition to the clinical findings and neuroimaging studies.

Results: Brain MRI showed mild pachygyria, hypoplasia of the cerebellar vermis, and abnormal foliation of the cerebellar vermis, suspected for a variant in one of the genes of the Reelin pathway. Trio whole-exome sequencing and additional functional studies were performed to identify the pathogenic variants. Trio whole-exome sequencing revealed compound heterozygous splice variants in , both affecting the highly conserved functional phosphotyrosine-binding domain. Expression studies in patient-derived cells showed loss of normal transcripts, confirming pathogenicity.

Conclusions: We conclude that these variants are very likely causally related to the cerebral phenotype and propose to consider loss-of-function variants in patients with RELN-like cortical malformations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/NXG.0000000000000558DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830234PMC
April 2021

Missense variants in DPYSL5 cause a neurodevelopmental disorder with corpus callosum agenesis and cerebellar abnormalities.

Am J Hum Genet 2021 05 23;108(5):951-961. Epub 2021 Apr 23.

Service de Génétique, Centre Hospitalier Universitaire, 86021 Poitiers, France; Equipe d'Accueil 3808, Université de Poitiers, 86034 Poitiers, France.

The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and βIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and βIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.04.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206156PMC
May 2021

ATP1A2- and ATP1A3-associated early profound epileptic encephalopathy and polymicrogyria.

Brain 2021 06;144(5):1435-1450

Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy.

Constitutional heterozygous mutations of ATP1A2 and ATP1A3, encoding for two distinct isoforms of the Na+/K+-ATPase (NKA) alpha-subunit, have been associated with familial hemiplegic migraine (ATP1A2), alternating hemiplegia of childhood (ATP1A2/A3), rapid-onset dystonia-parkinsonism, cerebellar ataxia-areflexia-progressive optic atrophy, and relapsing encephalopathy with cerebellar ataxia (all ATP1A3). A few reports have described single individuals with heterozygous mutations of ATP1A2/A3 associated with severe childhood epilepsies. Early lethal hydrops fetalis, arthrogryposis, microcephaly, and polymicrogyria have been associated with homozygous truncating mutations in ATP1A2. We investigated the genetic causes of developmental and epileptic encephalopathies variably associated with malformations of cortical development in a large cohort and identified 22 patients with de novo or inherited heterozygous ATP1A2/A3 mutations. We characterized clinical, neuroimaging and neuropathological findings, performed in silico and in vitro assays of the mutations' effects on the NKA-pump function, and studied genotype-phenotype correlations. Twenty-two patients harboured 19 distinct heterozygous mutations of ATP1A2 (six patients, five mutations) and ATP1A3 (16 patients, 14 mutations, including a mosaic individual). Polymicrogyria occurred in 10 (45%) patients, showing a mainly bilateral perisylvian pattern. Most patients manifested early, often neonatal, onset seizures with a multifocal or migrating pattern. A distinctive, 'profound' phenotype, featuring polymicrogyria or progressive brain atrophy and epilepsy, resulted in early lethality in seven patients (32%). In silico evaluation predicted all mutations to be detrimental. We tested 14 mutations in transfected COS-1 cells and demonstrated impaired NKA-pump activity, consistent with severe loss of function. Genotype-phenotype analysis suggested a link between the most severe phenotypes and lack of COS-1 cell survival, and also revealed a wide continuum of severity distributed across mutations that variably impair NKA-pump activity. We performed neuropathological analysis of the whole brain in two individuals with polymicrogyria respectively related to a heterozygous ATP1A3 mutation and a homozygous ATP1A2 mutation and found close similarities with findings suggesting a mainly neural pathogenesis, compounded by vascular and leptomeningeal abnormalities. Combining our report with other studies, we estimate that ∼5% of mutations in ATP1A2 and 12% in ATP1A3 can be associated with the severe and novel phenotypes that we describe here. Notably, a few of these mutations were associated with more than one phenotype. These findings assign novel, 'profound' and early lethal phenotypes of developmental and epileptic encephalopathies and polymicrogyria to the phenotypic spectrum associated with heterozygous ATP1A2/A3 mutations and indicate that severely impaired NKA pump function can disrupt brain morphogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awab052DOI Listing
June 2021

Disruption of RFX family transcription factors causes autism, attention-deficit/hyperactivity disorder, intellectual disability, and dysregulated behavior.

Genet Med 2021 06 3;23(6):1028-1040. Epub 2021 Mar 3.

Division of Medical Genetics, Nemours/A.I. DuPont Hospital for Children, Wilmington, DE, USA.

Purpose: We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis.

Methods: We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7. We describe their common clinical phenotypes and present bioinformatic analyses of expression patterns and downstream targets of these genes as they relate to other neurodevelopmental risk genes.

Results: These individuals share neurobehavioral features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes.

Conclusion: These results establish a likely role of deleterious variation in RFX3, RFX4, and RFX7 in cases of monogenic intellectual disability, ADHD and ASD, and position these genes as potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01114-zDOI Listing
June 2021

DLG4-related synaptopathy: a new rare brain disorder.

Genet Med 2021 05 17;23(5):888-899. Epub 2021 Feb 17.

Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.

Purpose: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.

Methods: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing.

Results: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies.

Conclusion: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-01075-9DOI Listing
May 2021

Variants in GNAI1 cause a syndrome associated with variable features including developmental delay, seizures, and hypotonia.

Genet Med 2021 05 20;23(5):881-887. Epub 2021 Jan 20.

Duke University Health System, Durham, NC, USA.

Purpose: Neurodevelopmental disorders (NDDs) encompass a spectrum of genetically heterogeneous disorders with features that commonly include developmental delay, intellectual disability, and autism spectrum disorders. We sought to delineate the molecular and phenotypic spectrum of a novel neurodevelopmental disorder caused by variants in the GNAI1 gene.

Methods: Through large cohort trio-based exome sequencing and international data-sharing, we identified 24 unrelated individuals with NDD phenotypes and a variant in GNAI1, which encodes the inhibitory Gαi1 subunit of heterotrimeric G-proteins. We collected detailed genotype and phenotype information for each affected individual.

Results: We identified 16 unique variants in GNAI1 in 24 affected individuals; 23 occurred de novo and 1 was inherited from a mosaic parent. Most affected individuals have a severe neurodevelopmental disorder. Core features include global developmental delay, intellectual disability, hypotonia, and epilepsy.

Conclusion: This collaboration establishes GNAI1 variants as a cause of NDDs. GNAI1-related NDD is most often characterized by severe to profound delays, hypotonia, epilepsy that ranges from self-limiting to intractable, behavior problems, and variable mild dysmorphic features.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-01076-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8107131PMC
May 2021

A dyadic approach to the delineation of diagnostic entities in clinical genomics.

Am J Hum Genet 2021 01;108(1):8-15

Molecular Medicine & Pathology and Pediatrics, McMaster University, Hamilton, ON L8S 3K9, Canada.

The delineation of disease entities is complex, yet recent advances in the molecular characterization of diseases provide opportunities to designate diseases in a biologically valid manner. Here, we have formalized an approach to the delineation of Mendelian genetic disorders that encompasses two distinct but inter-related concepts: (1) the gene that is mutated and (2) the phenotypic descriptor, preferably a recognizably distinct phenotype. We assert that only by a combinatorial or dyadic approach taking both of these attributes into account can a unitary, distinct genetic disorder be designated. We propose that all Mendelian disorders should be designated as "GENE-related phenotype descriptor" (e.g., "CFTR-related cystic fibrosis"). This approach to delineating and naming disorders reconciles the complexity of gene-to-phenotype relationships in a simple and clear manner yet communicates the complexity and nuance of these relationships.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.11.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7820621PMC
January 2021

Mary Ella Mascia Pierpont: Geneticist, scientist, mentor, friend (1945-2020).

Am J Med Genet A 2021 02 26;185(2):319-323. Epub 2020 Nov 26.

Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61963DOI Listing
February 2021

The spectrum of brain malformations and disruptions in twins.

Am J Med Genet A 2021 09 18;185(9):2690-2718. Epub 2020 Nov 18.

Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA.

Twins have an increased risk for congenital malformations and disruptions, including defects in brain morphogenesis. We analyzed data on brain imaging, zygosity, sex, and fetal demise in 56 proband twins and 7 less affected co-twins with abnormal brain imaging and compared them to population-based data and to a literature series. We separated our series into malformations of cortical development (MCD, N = 39), cerebellar malformations without MCD (N = 13), and brain disruptions (N = 11). The MCD group included 37/39 (95%) with polymicrogyria (PMG), 8/39 (21%) with pia-ependymal clefts (schizencephaly), and 15/39 (38%) with periventricular nodular heterotopia (PNH) including 2 with PNH but not PMG. Cerebellar malformations were found in 19 individuals including 13 with a cerebellar malformation only and another 6 with cerebellar malformation and MCD. The pattern varied from diffuse cerebellar hypoplasia to classic Dandy-Walker malformation. Brain disruptions were seen in 11 individuals with hydranencephaly, porencephaly, or white matter loss without cysts. Our series included an expected statistically significant excess of monozygotic (MZ) twin pairs (22/41 MZ, 54%) compared to population data (482/1448 MZ, 33.3%; p = .0110), and an unexpected statistically significant excess of dizygotic (DZ) twins (19/41, 46%) compared to the literature cohort (1/46 DZ, 2%; p < .0001. Recurrent association with twin-twin transfusion syndrome, intrauterine growth retardation, and other prenatal factors support disruption of vascular perfusion as the most likely unifying cause.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61972DOI Listing
September 2021

Bilateral polymicrogyria associated with dystonia: A new neurogenetic syndrome?

Am J Med Genet A 2020 10 17;182(10):2207-2213. Epub 2020 Aug 17.

Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.

The clinical presentation of bilateral perisylvian polymicrogyria (PMG) is highly variable, including oromotor dysfunction, epilepsy, intellectual disability, and pyramidal signs. Extrapyramidal features are extremely rare. We present four apparently unrelated patients with a unique association of PMG with dystonia. The clinical, genetic, and radiologic features are described and possible mechanisms of dystonia are discussed. All patients were female and two were born to consanguineous families. All presented with early childhood onset dystonia. Other neurologic symptoms and signs classically seen in bilateral perisylvian PMG were observed, including oromotor dysfunction and speech abnormalities ranging from dysarthria to anarthria (4/4), pyramidal signs (3/4), hypotonia (3/4), postnatal microcephaly (1/4), and seizures (1/4). Neuroimaging showed a unique pattern of bilateral PMG with an infolded cortex originating primarily from the perisylvian region in three out of four patients. Whole exome sequencing was performed in two out of four patients and did not reveal pathogenic variants in known genes for cortical malformations or movement disorders. The dystonia seen in our patients is not described in bilateral PMG and suggests an underlying mechanism of impaired connectivity within the motor network or compromised cortical inhibition. The association of bilateral PMG with dystonia in our patients may represent a new neurogenetic disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61795DOI Listing
October 2020

Recurrent constellations of embryonic malformations re-conceptualized as an overlapping group of disorders with shared pathogenesis.

Am J Med Genet A 2020 11 14;182(11):2646-2661. Epub 2020 Sep 14.

Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA.

Several recurrent malformation associations affecting the development of the embryo have been described in which a genetic etiology has not been found, including LBWC, MURCS, OAVS, OEIS, POC, VACTERL, referred to here as "recurrent constellations of embryonic malformations" (RCEM). All are characterized by an excess of reported monozygotic discordant twins and lack of familial recurrence. We performed a comprehensive review of published twin data across all six phenotypes to allow a more robust assessment of the association with twinning and potential embryologic timing of a disruptive event. We recorded the type of twinning, any overlapping features of another RCEM, maternal characteristics, and the use of ART. Statistically significant associations included an excess of monozygotic twins and 80% discordance rate for the phenotype across all twins. There was an 18.5% rate of ART and no consistently reported maternal adverse events during pregnancy. We found 24 instances of co-occurrence of two RCEM, suggesting a shared pathogenesis across all RCEM phenotypes. We hypothesize the following timing for RCEM phenotypes from the earliest perturbation in development to the latest: LBWC, POC, OEIS, VACTERL, OAVS, then MURCS. The RCEM group of conditions should be considered a spectrum that could be studied as a group.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61847DOI Listing
November 2020

International consensus recommendations on the diagnostic work-up for malformations of cortical development.

Nat Rev Neurol 2020 Nov 7;16(11):618-635. Epub 2020 Sep 7.

Institute for Clinical Genetics, TU Dresden, Dresden, Germany.

Malformations of cortical development (MCDs) are neurodevelopmental disorders that result from abnormal development of the cerebral cortex in utero. MCDs place a substantial burden on affected individuals, their families and societies worldwide, as these individuals can experience lifelong drug-resistant epilepsy, cerebral palsy, feeding difficulties, intellectual disability and other neurological and behavioural anomalies. The diagnostic pathway for MCDs is complex owing to wide variations in presentation and aetiology, thereby hampering timely and adequate management. In this article, the international MCD network Neuro-MIG provides consensus recommendations to aid both expert and non-expert clinicians in the diagnostic work-up of MCDs with the aim of improving patient management worldwide. We reviewed the literature on clinical presentation, aetiology and diagnostic approaches for the main MCD subtypes and collected data on current practices and recommendations from clinicians and diagnostic laboratories within Neuro-MIG. We reached consensus by 42 professionals from 20 countries, using expert discussions and a Delphi consensus process. We present a diagnostic workflow that can be applied to any individual with MCD and a comprehensive list of MCD-related genes with their associated phenotypes. The workflow is designed to maximize the diagnostic yield and increase the number of patients receiving personalized care and counselling on prognosis and recurrence risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41582-020-0395-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790753PMC
November 2020

Cell-free DNA as a diagnostic analyte for molecular diagnosis of vascular malformations.

Genet Med 2021 01 4;23(1):123-130. Epub 2020 Sep 4.

Vascular Anomalies Program, Seattle Children's Hospital, Seattle, WA, USA.

Purpose: Vascular malformations (VM) are primarily caused by somatic activating pathogenic variants in oncogenes. Targeted pharmacotherapies are emerging but require molecular diagnosis. Since variants are currently only detected in malformation tissue, patients may be ineligible for clinical trials prior to surgery. We hypothesized that cell-free DNA (cfDNA) could provide molecular diagnoses for patients with isolated VM.

Methods: cfDNA was isolated from plasma or cyst fluid from patients with arteriovenous malformations (AVM), venous malformations (VeM), or lymphatic malformations (LM), and assayed for known pathogenic variants using droplet digital polymerase chain reaction (ddPCR). Cyst fluid cfDNA from an independent cohort of LM patients was prospectively screened for variants using a multiplex ddPCR assay.

Results: Variants were detected in plasma cfDNA in patients with AVM (2/8) and VeM (1/3). Variants were detected in cyst fluid cfDNA (7/7) but not plasma (0/26) in LM patients. Prospective testing of cyst fluid cfDNA with multiplex ddPCR identified variants in LM patients who had never undergone surgery (4/5).

Conclusion: Variants were detected in plasma from AVM and VeM patients, and in cyst fluid from patients with LM. These data support investigation of cfDNA-based molecular diagnostics for VM patients, which may provide opportunities to initiate targeted pharmacotherapies without prior surgery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-00943-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796969PMC
January 2021

Cobblestone Malformation in LAMA2 Congenital Muscular Dystrophy (MDC1A).

J Neuropathol Exp Neurol 2020 09;79(9):998-1010

Department of Pathology, The University of Iowa, Iowa City, Iowa.

Congenital muscular dystrophy type 1A (MDC1A) is caused by recessive variants in laminin α2 (LAMA2). Patients have been found to have white matter signal abnormalities on magnetic resonance imaging (MRI) but rarely structural brain abnormalities. We describe the autopsy neuropathology in a 17-year-old with white matter signal abnormalities on brain MRI. Dystrophic pathology was observed in skeletal muscle, and the sural nerve manifested a mild degree of segmental demyelination and remyelination. A diffuse, bilateral cobblestone appearance, and numerous points of fusion between adjacent gyri were apparent on gross examination of the cerebrum. Brain histopathology included focal disruptions of the glia limitans associated with abnormal cerebral cortical lamination or arrested cerebellar granule cell migration. Subcortical nodular heterotopia was present within the cerebellar hemispheres. Sampling of the centrum semiovale revealed no light microscopic evidence of leukoencephalopathy. Three additional MDC1A patients were diagnosed with cobblestone malformation on brain MRI. Unlike the autopsied patient whose brain had a symmetric distribution of cobblestone pathology, the latter patients had asymmetric involvement, most severe in the occipital lobes. These cases demonstrate that cobblestone malformation may be an important manifestation of the brain pathology in MDC1A and can be present even when patients have a structurally normal brain MRI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnen/nlaa062DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7445049PMC
September 2020

Genotype-phenotype correlation at codon 1740 of SETD2.

Am J Med Genet A 2020 09 24;182(9):2037-2048. Epub 2020 Jul 24.

Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.

The SET domain containing 2, histone lysine methyltransferase encoded by SETD2 is a dual-function methyltransferase for histones and microtubules and plays an important role for transcriptional regulation, genomic stability, and cytoskeletal functions. Specifically, SETD2 is associated with trimethylation of histone H3 at lysine 36 (H3K36me3) and methylation of α-tubulin at lysine 40. Heterozygous loss of function and missense variants have previously been described with Luscan-Lumish syndrome (LLS), which is characterized by overgrowth, neurodevelopmental features, and absence of overt congenital anomalies. We have identified 15 individuals with de novo variants in codon 1740 of SETD2 whose features differ from those with LLS. Group 1 consists of 12 individuals with heterozygous variant c.5218C>T p.(Arg1740Trp) and Group 2 consists of 3 individuals with heterozygous variant c.5219G>A p.(Arg1740Gln). The phenotype of Group 1 includes microcephaly, profound intellectual disability, congenital anomalies affecting several organ systems, and similar facial features. Individuals in Group 2 had moderate to severe intellectual disability, low normal head circumference, and absence of additional major congenital anomalies. While LLS is likely due to loss of function of SETD2, the clinical features seen in individuals with variants affecting codon 1740 are more severe suggesting an alternative mechanism, such as gain of function, effects on epigenetic regulation, or posttranslational modification of the cytoskeleton. Our report is a prime example of different mutations in the same gene causing diverging phenotypes and the features observed in Group 1 suggest a new clinically recognizable syndrome uniquely associated with the heterozygous variant c.5218C>T p.(Arg1740Trp) in SETD2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61724DOI Listing
September 2020

Defining the phenotypical spectrum associated with variants in .

J Med Genet 2021 01 22;58(1):33-40. Epub 2020 Jun 22.

Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium.

Background: Variants in genes belonging to the tubulin superfamily account for a heterogeneous spectrum of brain malformations referred to as tubulinopathies. Variants in have been reported in 10 patients with a broad spectrum of brain imaging features, ranging from a normal cortex to polymicrogyria, while one patient has been reported with progressive atrophy of the cerebellar vermis.

Methods: In order to further refine the phenotypical spectrum associated with , clinical and imaging features of 12 patients with pathogenic variants, recruited via the international network of the authors, were reviewed.

Results: We report 12 patients with eight novel and one recurrent variants spread throughout the gene but encoding for amino acids clustering at the protein surface. Eleven patients (91.7%) developed seizures in early life. All patients suffered from intellectual disability, and 11 patients had severe motor developmental delay, with 4 patients (36.4 %) being non-ambulatory. The cerebral cortex was normal in five individuals and showed dysgyria of variable severity in seven patients. Associated brain malformations were less frequent in patients compared with other tubulinopathies. None of the patients had progressive cerebellar atrophy.

Conclusion: The imaging phenotype associated with pathogenic variants in is highly variable, ranging from a normal cortex to extensive dysgyria with associated brain malformations. For recurrent variants, no clear genotype-phenotype correlations could be established, suggesting the role of additional modifiers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2019-106740DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803914PMC
January 2021

Activating variants in PDGFRB result in a spectrum of disorders responsive to imatinib monotherapy.

Am J Med Genet A 2020 07 5;182(7):1576-1591. Epub 2020 Jun 5.

Department of Otolaryngology, Seattle Children's Hospital, Seattle, Washington, USA.

More than 50 individuals with activating variants in the receptor tyrosine kinase PDGFRB have been reported, separated based on clinical features into solitary myofibromas, infantile myofibromatosis, Penttinen syndrome with premature aging and osteopenia, Kosaki overgrowth syndrome, and fusiform aneurysms. Despite their descriptions as distinct clinical entities, review of previous reports demonstrates substantial phenotypic overlap. We present a case series of 12 patients with activating variants in PDGFRB and review of the literature. We describe five patients with PDGFRB activating variants whose clinical features overlap multiple diagnostic entities. Seven additional patients from a large family had variable expressivity and late-onset disease, including adult onset features and two individuals with sudden death. Three patients were treated with imatinib and had robust and rapid response, including the first two reported infants with multicentric myofibromas treated with imatinib monotherapy and one with a recurrent p.Val665Ala (Penttinen) variant. Along with previously reported individuals, our cohort suggests infants and young children had few abnormal features, while older individuals had multiple additional features, several of which appeared to worsen with advancing age. Our analysis supports a diagnostic entity of a spectrum disorders due to activating variants in PDGFRB. Differences in reported phenotypes can be dramatic and correlate with advancing age, genotype, and to mosaicism in some individuals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61615DOI Listing
July 2020

Reply to Hsueh YP et al.

Eur J Hum Genet 2020 08 9;28(8):999. Epub 2020 Apr 9.

Department of Neurological Surgery, Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-020-0622-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471462PMC
August 2020

Autosomal dominant TUBB3-related syndrome: Fetal, radiologic, clinical and morphological features.

Eur J Paediatr Neurol 2020 May 4;26:46-60. Epub 2020 Mar 4.

Metabolic Neurogenetic Service, Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.

Objective: To describe fetal, clinical, radiological, morphological features of TUBB3 related syndrome.

Methods: We report two families each of two generations harboring a novel and a previously described heterozygous TUBB3 pathogenic variants. We compared these patients with other published TUBB3-related cases. We describe the pathological features of dysgyria in the two aborted fetuses.

Results: The mother and son from family 1 had a history of mild developmental delay in motor and language skills and demonstrated mild cerebellar signs and mirror movements. Neuroimaging findings included: hypoplastic corpus callosum (CC), asymmetric ventriculomegaly and cerebellar vermis hypoplasia in all patients and frontal dysgyria in three. Autopsy of the fetal brain showed an unusual shape and orientation of the frontal sulci and gyri with normal cortical layering and no abnormal cell types. The mother of family 2 had congenital strabismus, mild muscle weakness on the right and a past history of developmental delay. Fetal brain MRI showed abnormal cerebral sulcation, hemispheric asymmetry, asymmetric ventriculomegaly, dysmorphic short CC and frontal cortical interdigitation. Autopsy demonstrated fronto-parietal predominant dysgyria, bilateral ventriculomegaly, hippocampal and CC hypoplasia, abnormal Sylvian fissure. Lamination and neuron morphology in the areas of dysgyria were normal.

Conclusions: TUBB3 related cortical malformations can be mild, consistent with dysgyria rather than typical pachygyria or polymicrogyria. The autopsy findings in fetal TUBB3 related dysgyria are abnormal orientation of sulci and gyri, but normal neuron morphology and layering. We suggest that TUBB3 - associated brain malformations can be suspected in-utero which in turn can aid in prognostic counselling and interpretation of genetic testing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpn.2020.03.001DOI Listing
May 2020

Pathogenic Variants in CEP85L Cause Sporadic and Familial Posterior Predominant Lissencephaly.

Neuron 2020 04 24;106(2):237-245.e8. Epub 2020 Feb 24.

Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3052, VIC, Australia; Departments of Paediatrics and Neurology, The Royal Children's Hospital, The University of Melbourne, Melbourne 3052, VIC, Australia; Epilepsy Research Centre, University of Melbourne, Austin Health, Melbourne 3084, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, Melbourne 3052, VIC, Australia.

Lissencephaly (LIS), denoting a "smooth brain," is characterized by the absence of normal cerebral convolutions with abnormalities of cortical thickness. Pathogenic variants in over 20 genes are associated with LIS. The majority of posterior predominant LIS is caused by pathogenic variants in LIS1 (also known as PAFAH1B1), although a significant fraction remains without a known genetic etiology. We now implicate CEP85L as an important cause of posterior predominant LIS, identifying 13 individuals with rare, heterozygous CEP85L variants, including 2 families with autosomal dominant inheritance. We show that CEP85L is a centrosome protein localizing to the pericentriolar material, and knockdown of Cep85l causes a neuronal migration defect in mice. LIS1 also localizes to the centrosome, suggesting that this organelle is key to the mechanism of posterior predominant LIS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2020.01.027DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357395PMC
April 2020

De novo TBR1 variants cause a neurocognitive phenotype with ID and autistic traits: report of 25 new individuals and review of the literature.

Eur J Hum Genet 2020 06 31;28(6):770-782. Epub 2020 Jan 31.

Department of Pediatrics, The Barbara Bush Children's Hospital, Maine Medical Center, Portland, OR, USA.

TBR1, a T-box transcription factor expressed in the cerebral cortex, regulates the expression of several candidate genes for autism spectrum disorders (ASD). Although TBR1 has been reported as a high-confidence risk gene for ASD and intellectual disability (ID) in functional and clinical reports since 2011, TBR1 has only recently been recorded as a human disease gene in the OMIM database. Currently, the neurodevelopmental disorders and structural brain anomalies associated with TBR1 variants are not well characterized. Through international data sharing, we collected data from 25 unreported individuals and compared them with data from the literature. We evaluated structural brain anomalies in seven individuals by analysis of MRI images, and compared these with anomalies observed in TBR1 mutant mice. The phenotype included ID in all individuals, associated to autistic traits in 76% of them. No recognizable facial phenotype could be identified. MRI analysis revealed a reduction of the anterior commissure and suggested new features including dysplastic hippocampus and subtle neocortical dysgenesis. This report supports the role of TBR1 in ID associated with autistic traits and suggests new structural brain malformations in humans. We hope this work will help geneticists to interpret TBR1 variants and diagnose ASD probands.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-020-0571-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7253452PMC
June 2020
-->