Publications by authors named "Wenxiu Zou"

4 Publications

  • Page 1 of 1

Long-term continuous cropping affects ecoenzymatic stoichiometry of microbial nutrient acquisition: a case study from a Chinese Mollisol.

J Sci Food Agric 2021 May 10. Epub 2021 May 10.

Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.

Background: Soil- and plant-produced extracellular enzymes drive nutrient cycling in soils and are assumed to regulate supply and demand for carbon (C) and nutrients within the soil. Thus, agriculture management decisions that alter the balance of plant and supplemental nutrients should directly alter extracellular enzyme activities (EEAs), and EEA stoichiometry in predictable ways. We used a 12-year experiment that varyied three major continuous grain crops (wheat, soybean, and maize), each crossed with mineral fertilizer (WCF, SCF and MCF, respectively) or not fertilized (WC, SC and MC, respectively, as controls). In response, we measured the phospholipid fatty acids (PLFAs), EEAs and their stoichiometry to examine the changes to soil microbial nutrient demand under the continuous cropping of crops, which differed with respect to the input of plant litter and fertilizer.

Results: Fertilizer generally decreased soil microbial biomass and enzyme activity compared to non-fertilized soil. According to enzyme stoichiometry, microbial nutrient demand was generally C- and phosphorus (P)-limited, but not nitrogen (N)-limited. However, the degree of microbial resource limitation differed among the three crops. The enzymatic C:N ratio was significantly lower by 13.3% and 26.8%, whereas the enzymatic N:P ratio was significantly higher by 9.9% and 42.4%, in MCF than in WCF and SCF, respectively. The abundances of arbuscular mycorrhizal fungi and aerobic PLFAs were significantly higher in MCF than in WCF and SCF.

Conclusion: These findings are crucial for characterizing enzymatic activities and their stoichiometries that drive microbial metabolism with respect to understanding soil nutrient cycles and environmental conditions and optimizing practices of agricultural management. © 2021 Society of Chemical Industry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.11304DOI Listing
May 2021

Impacts of land-use changes on the variability of microbiomes in soil profiles.

J Sci Food Agric 2021 Feb 11. Epub 2021 Feb 11.

Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin,, China.

Background: The conversion of arable land to grassland and/or forested land is a common strategy of restoration because the development of plant communities can inhibit the erosion of soil, increase biodiversity and improve associated ecosystem services. The vertical profiles of microbial communities, however, have not been well characterized and their variability after land conversion is not well understood. We assessed the effects of the conversion of arable land (AL) to grassland (GL) and forested land (FL) on bacterial communities as old as 29 years in 0-200-cm profiles of a Chinese Mollisol.

Results: The soil in AL has been a stable ecosystem and changes in the assembly of soil microbiomes tended to be larger in the topsoil. The soil properties and microbial biodiversity of arable land were larger following revegetation and reforestation. The conversion caused a more complex coupling among microbes, and negative interactions and average connectivity were stronger in the 0-20-cm layers in GL and in the 20-60-cm layers in FL. The land use dramatically influenced the assembly of the microbial communities more in GL than AL and FL. The bacterial diversity was an important component of soil multinutrient cycling in the profiles and microbial functions were not as affected by changes in land use.

Conclusion: The spatial variation of the microbiomes provided critical information on below-ground soil ecology and the ability of the soil to provide crucial ecosystem services. © 2021 Society of Chemical Industry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.11150DOI Listing
February 2021

Keystone Microbiomes Revealed by 14 Years of Field Restoration of the Degraded Agricultural Soil Under Distinct Vegetation Scenarios.

Front Microbiol 2020 18;11:1915. Epub 2020 Aug 18.

National Observation Station of Hailun Agro-Ecology System, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.

Agricultural intensification accelerates the degradation of cropland, and restoration has been managed by changing its vegetation. However, the keystone microbiome that drives the decomposition of plant-associated organic matter in the restoration is poorly understood. In this study, we established a 14-year field restoration experiment on a degraded cropland with four treatments: (1) bare land soil without biomass input (BL), (2) maize cropland (CL) without fertilization and biomass input, (3) natural grassland (GL), and (4) alfalfa cropland (AL) with biomass left in the fields. The activity of total soil microbiome was assessed by community-level physiological profiling (CLPP) with Biolog EcoPlates analysis, and keystone microbiome was identified as phylotypes showing statistically significant increase in the restored soils (GL and AL) relative to the degraded BL soil. The results showed that GL and AL treatments improved soil fertility as indicated by significant increase in soil organic carbon, total nitrogen, and available phosphorus when compared to BL treatment. The significant difference was not observed between CL and BL treatments except for pH and available phosphorus, indicating that the input and microbial decomposition of plant-associated organic matter were the key for restoration of soil fertility. Similar results were obtained for soil microbial activities of carbon utilization efficiency via CLPP analysis, and real-time quantitative polymerase chain reaction of 16S rRNA genes further revealed significantly higher abundance of total soil microbial community in GL and AL soils than in BL and CL. High-throughput sequencing of total 16S rRNA genes revealed the Bacteroidetes as the only keystone taxa at phylum level, and 106 and 120 genera were keystone phylotypes. Compared with BL and CL, the genera that increase significantly in GL and AL are called keystone genera of ecological restoration. The dominant keystone genera included , , , , , and . Significantly higher abundance of genus in BL soil implied it might serve as an indicator of agricultural land degradation. Statistical analysis showed that soil organic carbon and pH were significantly correlated with the input of plant-associated organic matters and dynamic changes of keystone taxa. These results suggest that the vegetation of natural grass (GL) and alfalfa plant (AL) and subsequent decomposition of plant-associated materials could serve as effective strategies for restoration of the degraded cropland by stimulating the keystone microbiomes and improving their physiological metabolisms of carbon utilization efficiency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fmicb.2020.01915DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7461875PMC
August 2020

Genetic diversity of indigenous soybean-nodulating rhizobia in response to locally-based long term fertilization in a Mollisol of Northeast China.

World J Microbiol Biotechnol 2017 Jan 15;33(1). Epub 2016 Nov 15.

Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.

The influences of five different fertilizer treatments on diversity of rhizobia in soybean nodule were investigated in a long-term experiment with with four replicates: (1) control (without fertilization), (2) balanced NPK fertilizer (NPK), and (3-5) unbalanced chemical fertilizers without one of the major elements (NP, PK, and NK) in Mollisol in Northeast China. The highest soybean yield was observed in the NPK treatment. Total of 200 isolates were isolated and grouped into four Bradyrhizobium genospecies corresponding to B. japonicum, B. diazoefficiens, B. ottawaense and Bradyrhizobium sp. I, based upon the multilocus sequence analysis of 6 housekeeping genes. The Bradyrhizobium sp. I was extensively distributed throughout the study site and was recorded as the dominant soybean rhizobia (82.5-87.5%). Except the NK treatment, the other fertilizer treatments had no effect on rhizobial species composition. Compared with the CK treatment, all the fertilizer treatments decreased species richness, diversity and evenness. The soil organic carbon contents, available N content and pH were the key soil factors to rhizobial community structure. Results suggest that long-term fertilization can decrease rhizobial species diversity, while balanced fertilization with NPK is the most suitable fertilization regime if taking both soybean yields and rhizobial diversity into account.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-016-2170-9DOI Listing
January 2017