Publications by authors named "Wassila Carpentier"

44 Publications

WDR34, a candidate gene for non-syndromic rod-cone dystrophy.

Clin Genet 2021 02 9;99(2):298-302. Epub 2020 Nov 9.

Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.

Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cge.13872DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049445PMC
February 2021

The 10q26 Risk Haplotype of Age-Related Macular Degeneration Aggravates Subretinal Inflammation by Impairing Monocyte Elimination.

Immunity 2020 08;53(2):429-441.e8

Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France. Electronic address:

A minor haplotype of the 10q26 locus conveys the strongest genetic risk for age-related macular degeneration (AMD). Here, we examined the mechanisms underlying this susceptibility. We found that monocytes from homozygous carriers of the 10q26 AMD-risk haplotype expressed high amounts of the serine peptidase HTRA1, and HTRA1 located to mononuclear phagocytes (MPs) in eyes of non-carriers with AMD. HTRA1 induced the persistence of monocytes in the subretinal space and exacerbated pathogenic inflammation by hydrolyzing thrombospondin 1 (TSP1), which separated the two CD47-binding sites within TSP1 that are necessary for efficient CD47 activation. This HTRA1-induced inhibition of CD47 signaling induced the expression of pro-inflammatory osteopontin (OPN). OPN expression increased in early monocyte-derived macrophages in 10q26 risk carriers. In models of subretinal inflammation and AMD, OPN deletion or pharmacological inhibition reversed HTRA1-induced pathogenic MP persistence. Our findings argue for the therapeutic potential of CD47 agonists and OPN inhibitors for the treatment of AMD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2020.07.021DOI Listing
August 2020

Long-Term Pantethine Treatment Counteracts Pathologic Gene Dysregulation and Decreases Alzheimer's Disease Pathogenesis in a Transgenic Mouse Model.

Neurotherapeutics 2019 10;16(4):1237-1254

CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Univ, Marseille, France.

The low-molecular weight thiol pantethine, known as a hypolipidemic and hypocholesterolemic agent, is the major precursor of co-enzyme A. We have previously shown that pantethine treatment reduces amyloid-β (Aβ)-induced IL-1β release and alleviates pathological metabolic changes in primary astrocyte cultures. These properties of pantethine prompted us to investigate its potential benefits in vivo in the 5XFAD (Tg) mouse model of Alzheimer's disease (AD).1.5-month-old Tg and wild-type (WT) male mice were submitted to intraperitoneal administration of pantethine or saline control solution for 5.5 months. The effects of such treatments were investigated by performing behavioral tests and evaluating astrogliosis, microgliosis, Αβ deposition, and whole genome expression arrays, using RNAs extracted from the mice hippocampi. We observed that long-term pantethine treatment significantly reduced glial reactivity and Αβ deposition, and abrogated behavioral alteration in Tg mice. Moreover, the transcriptomic profiles revealed that after pantethine treatment, the expression of genes differentially expressed in Tg mice, and in particular those known to be related to AD, were significantly alleviated. Most of the genes overexpressed in Tg compared to WT were involved in inflammation, complement activation, and phagocytosis and were found repressed upon pantethine treatment. In contrast, pantethine restored the expression of a significant number of genes involved in the regulation of Αβ processing and synaptic activities, which were downregulated in Tg mice. Altogether, our data support a beneficial role for long-term pantethine treatment in preserving CNS crucial functions altered by Aβ pathogenesis in Tg mice and highlight the potential efficiency of pantethine to alleviate AD pathology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13311-019-00754-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985318PMC
October 2019

Atorvastatin reduces β-Adrenergic dysfunction in rats with diabetic cardiomyopathy.

PLoS One 2017 20;12(7):e0180103. Epub 2017 Jul 20.

Sorbonne Universités, UPMC Univ Paris 06, UMR INSERM 1166, IHU ICAN, and Department of Anesthesiology and Critical Care Medicine, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.

Background: In the diabetic heart the β-adrenergic response is altered partly by down-regulation of the β1-adrenoceptor, reducing its positive inotropic effect and up-regulation of the β3-adrenoceptor, increasing its negative inotropic effect. Statins have clinical benefits on morbidity and mortality in diabetic patients which are attributed to their "pleiotropic" effects. The objective of our study was to investigate the role of statin treatment on β-adrenergic dysfunction in diabetic rat cardiomyocytes.

Methods: β-adrenergic responses were investigated in vivo (echocardiography) and ex vivo (left ventricular papillary muscles) in healthy and streptozotocin-induced diabetic rats, who were pre-treated or not by oral atorvastatin over 15 days (50 mg.kg-1.day-1). Micro-array analysis and immunoblotting were performed in left ventricular homogenates. Data are presented as mean percentage of baseline ± SD.

Results: Atorvastatin restored the impaired positive inotropic effect of β-adrenergic stimulation in diabetic hearts compared with healthy hearts both in vivo and ex vivo but did not suppress the diastolic dysfunction of diabetes. Atorvastatin changed the RNA expression of 9 genes in the β-adrenergic pathway and corrected the protein expression of β1-adrenoceptor and β1/β3-adrenoceptor ratio, and multidrug resistance protein 4 (MRP4). Nitric oxide synthase (NOS) inhibition abolished the beneficial effects of atorvastatin on the β-adrenoceptor response.

Conclusions: Atorvastatin restored the positive inotropic effect of the β-adrenoceptor stimulation in diabetic cardiomyopathy. This effect is mediated by multiple modifications in expression of proteins in the β-adrenergic signaling pathway, particularly through the NOS pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180103PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5519044PMC
September 2017

Genetic Drivers of Kidney Defects in the DiGeorge Syndrome.

N Engl J Med 2017 02 25;376(8):742-754. Epub 2017 Jan 25.

From the Division of Nephrology (E.L.-R., M.V., V.P.C., Z.Y., A.M., J.M., N.J.S., D.A.F., R.D., M.W., G.S.M., M.B., J.M.B., K.K., A.G.G., S.S.-C.) and the Division of Nephrology in Medicine and Zuckerman Mind Brain Behavior Institute (B.H.), the Departments of Systems Biology (D.S.P., B.H.), Biochemistry and Molecular Biophysics (B.H.), and Pathology (V.D.), and the Howard Hughes Medical Institute (D.S.P., B.H.), Columbia University, and the Department of Genetics and Development, Columbia University Medical Center (Q.L., V.E.P.), New York, and the Department of Genetics, Albert Einstein College of Medicine, Bronx (S.E.R., B.E.M.) - all in New York; the Center for Human Disease Modeling, Duke University, Durham, NC (Y.P.L., B.R.A., N. Katsanis); the Departments of Internal Medicine-Nephrology (E.A.O.) and Pediatrics-Nephrology (M.G.S., C.E.G., V.V.-W.), University of Michigan School of Medicine, Ann Arbor; the Department of Anatomy, Histology, and Embryology, School of Medicine, University of Split (K.V., M.S.-B.), and the Departments of Pediatrics (A.A., M. Saraga) and Pathology (N. Kunac), University Hospital of Split, Split, Croatia; the Department of Pediatric Nephrology, VU University Medical Center, Amsterdam (R.W., J.A.E.W.); the Department of Medicine, Boston Children's Hospital (A.V., F.H.), and Harvard Medical School, Boston (A.V., F.H., I.A.D.), and the Nephrology Division, Massachusetts General Hospital, Charlestown (I.A.D.) - all in Massachusetts; the Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa (M.B., A.C., G.M.G.), the Department of Clinical and Experimental Medicine, University of Parma (M.B., M. Maiorana, L.A.), and the Pediatric Surgery Unit, University Hospital of Parma (E.C.), Parma, the Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari (L.G.), the Department of Medical Sciences, University of Milano, and Institute of Biomedical Technologies, Italian National Institute of Research ITB-CNR, Milan (D.C.), and Dipartimento Ostetrico-Ginecologico e Seconda Divisione di Nefrologia ASST Spedali Civili e Presidio di Montichiari (C.I.) and Cattedra di Nefrologia, Università di Brescia, Seconda Divisione di Nefrologia Azienda Ospedaliera Spedali Civili di Brescia Presidio di Montichiari (F.S.), Brescia - all in Italy; the Department of General and Transplant Surgery, University Hospital of Heidelberg, Germany (V.J.L.); the Department of Pediatric Nephrology, Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (R.S., L.H., C.J.), INSERM UMR 1163, Laboratory of Hereditary Kidney Diseases (R.S.), Necker-Enfants Malades Hospital, Paris Descartes-Sorbonne Paris Cite University, Imagine Institute (R.S.), Sorbonne Universités, UPMC 06, Plateforme Post-génomique de la Pitié-Salpêtrière, UMS 2 Omique, Inserm US029 (W.C.), Paris, and the Department of Genetics, Centre Hospitalier Universitaire de Reims, Unité de Formation et de Recherche de Médecine, Reims (D.G.) - both in France; the Department of Neurology, University of Washington School of Medicine, and Northwest VA Parkinson's Disease Research, Education and Clinical Centers, Seattle (A. Samii); the Division of Human Genetics, Department of Pediatrics, 22q and You Center, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania (D.M.M.-M., T.B.C., E.H.Z., S.L.F.), Division of Nephrology, Children's Hospital of Philadelphia (S.L.F.), and the Department of Genetics, University of Pennsylvania (H.H.), Philadelphia; the Dialysis Unit, Jagiellonian University Medical College (D.D.), and the Department of Pediatric Nephrology, Jagiellonian University Medical College (M. Miklaszewska), Krakow, the Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz (M.T.), the Department of Pediatric Nephrology Medical University of Lublin, Lublin (P.S.), the Department of Pediatrics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice (M. Szczepanska), the Department of Pediatrics and Nephrology, Medical University of Warsaw, Warsaw (M.M.-W., G.K., A. Szmigielska), and Krysiewicza Children's Hospital (M.Z.) and the Department of Medical Genetics, Poznan University of Medical Sciences, and Center for Medical Genetics GENESIS (A.L.-B., A.M.-K.), Poznań - all in Poland; the Department of Clinical Genetics (J.M.D., D.B.), National Children's Research Centre (J.M.D., P.P.), and University College Dublin School of Medicine (D.B.), Our Lady's Children's Hospital Crumlin, and the National Children's Hospital Tallaght (P.P.), Dublin, Ireland; the Division of Pediatric Nephrology, Children's Mercy Hospital, Kansas City, MO (B.A.W.); University Children's Hospital, Medical Faculty of Skopje, Skopje, Macedonia (Z.G., V.T.); Faculty of Medicine, Palacky University, Olomouc, Czech Republic (H.F.); the Division of Pediatric Nephrology, University of New Mexico Children's Hospital, Albuquerque (C.S.W.); Ben May Department for Cancer Research, University of Chicago, Chicago (A.I.); and the Department of Genetics, Howard Hughes Medical Institute, and Yale Center for Mendelian Genomics, Yale University, New Haven, CT (R.P.L.).

Background: The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown.

Methods: We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice.

Results: We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies.

Conclusions: We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa1609009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559731PMC
February 2017

Early born neurons are abnormally positioned in the doublecortin knockout hippocampus.

Hum Mol Genet 2017 01;26(1):90-108

INSERM UMR-S 839, Paris.

Human doublecortin (DCX) mutations are associated with severe brain malformations leading to aberrant neuron positioning (heterotopia), intellectual disability and epilepsy. The Dcx protein plays a key role in neuronal migration, and hippocampal pyramidal neurons in Dcx knockout (KO) mice are disorganized. The single CA3 pyramidal cell layer observed in wild type (WT) is present as two abnormal layers in the KO, and CA3 KO pyramidal neurons are more excitable than WT. Dcx KO mice also exhibit spontaneous epileptic activity originating in the hippocampus. It is unknown, however, how hyperexcitability arises and why two CA3 layers are observed.Transcriptome analyses were performed to search for perturbed postnatal gene expression, comparing Dcx KO CA3 pyramidal cell layers with WT. Gene expression changes common to both KO layers indicated mitochondria and Golgi apparatus anomalies, as well as increased cell stress. Intriguingly, gene expression analyses also suggested that the KO layers differ significantly from each other, particularly in terms of maturity. Layer-specific molecular markers and BrdU birthdating to mark the final positions of neurons born at distinct timepoints revealed inverted layering of the CA3 region in Dcx KO animals. Notably, many early-born 'outer boundary' neurons are located in an inner position in the Dcx KO CA3, superficial to other pyramidal neurons. This abnormal positioning likely affects cell morphology and connectivity, influencing network function. Dissecting this Dcx KO phenotype sheds light on coordinated developmental mechanisms of neuronal subpopulations, as well as gene expression patterns contributing to a bi-layered malformation associated with epilepsy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddw370DOI Listing
January 2017

A new 3p25 locus is associated with liver fibrosis progression in human immunodeficiency virus/hepatitis C virus-coinfected patients.

Hepatology 2016 11 29;64(5):1462-1472. Epub 2016 Jul 29.

Équipe Génomique, Bioinformatique et Applications (EA4627), Chaire de Bioinformatique, Conservatoire National des Arts et Métiers, Paris, France.

There is growing evidence that human genetic variants contribute to liver fibrosis in subjects with hepatitis C virus (HCV) monoinfection, but this aspect has been little investigated in patients coinfected with HCV and human immunodeficiency virus (HIV). We performed the first genome-wide association study of liver fibrosis progression in patients coinfected with HCV and HIV, using the well-characterized French National Agency for Research on AIDS and Viral Hepatitis CO13 HEPAVIH cohort. Liver fibrosis was assessed by elastography (FibroScan), providing a quantitative fibrosis score. After quality control, a genome-wide association study was conducted on 289 Caucasian patients, for a total of 8,426,597 genotyped (Illumina Omni2.5 BeadChip) or reliably imputed single-nucleotide polymorphisms. Single-nucleotide polymorphisms with P values <10 were investigated in two independent replication cohorts of European patients infected with HCV alone. Two signals of genome-wide significance (P < 5 × 10 ) were obtained. The first, on chromosome 3p25 and corresponding to rs61183828 (P = 3.8 × 10 ), was replicated in the two independent cohorts of patients with HCV monoinfection. The cluster of single-nucleotide polymorphisms in linkage disequilibrium with rs61183828 was located close to two genes involved in mechanisms affecting both cell signaling and cell structure (CAV3) or HCV replication (RAD18). The second signal, obtained with rs11790131 (P = 9.3 × 10 ) on chromosome region 9p22, was not replicated.

Conclusion: This genome-wide association study identified a new locus associated with liver fibrosis severity in patients with HIV/HCV coinfection, on chromosome 3p25, a finding that was replicated in patients with HCV monoinfection; these results provide new relevant hypotheses for the pathogenesis of liver fibrosis in patients with HIV/HCV coinfection that may help define new targets for drug development or new prognostic tests, to improve patient care. (Hepatology 2016;64:1462-1472).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.28695DOI Listing
November 2016

Homogeneous Inflammatory Gene Profiles Induced in Human Dermal Fibroblasts in Response to the Three Main Species of Borrelia burgdorferi sensu lato.

PLoS One 2016 5;11(10):e0164117. Epub 2016 Oct 5.

EA7290 Early Bacterial Virulence: Lyme borreliosis Group, FMTS, Université de Strasbourg, Strasbourg, France.

In Lyme borreliosis, the skin is the key site for bacterial inoculation by the infected tick and for cutaneous manifestations. We previously showed that different strains of Borrelia burgdorferi sensu stricto isolated from tick and from different clinical stages of the Lyme borreliosis (erythema migrans, and acrodermatitis chronica atrophicans) elicited a very similar transcriptional response in normal human dermal fibroblasts. In this study, using whole transcriptome microarray chips, we aimed to compare the transcriptional response of normal human dermal fibroblasts stimulated by 3 Borrelia burgdorferi sensu lato strains belonging to 3 main pathogenic species (B. afzelii, B. garinii and B. burgdorferi sensu stricto) in order to determine whether "species-related" inflammatory pathways could be identified. The three Borrelia strains tested exhibited similar transcriptional profiles, and no species-specific fingerprint of transcriptional changes in fibroblasts was observed. Conversely, a common core of chemokines/cytokines (CCL2, CXCL1, CXCL2, CXCL6, CXCL10, IL-6, IL-8) and interferon-related genes was stimulated by all the 3 strains. Dermal fibroblasts appear to play a key role in the cutaneous infection with Borrelia, inducing a homogeneous inflammatory response, whichever Borrelia species was involved.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164117PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5051687PMC
June 2017

A genome-wide association study in Caucasian women suggests the involvement of HLA genes in the severity of facial solar lentigines.

Pigment Cell Melanoma Res 2016 09 8;29(5):550-8. Epub 2016 Aug 8.

Équipe Génomique, Bioinformatique et Applications, Chaire de Bioinformatique, Conservatoire National des Arts et Métiers, Paris, France.

Solar lentigines are a common feature of sun-induced skin ageing. Little is known, however, about the genetic factors contributing to their development. In this genome-wide association study, we aimed to identify genetic loci associated with solar lentigines on the face in 502 middle-aged French women. Nine SNPs, gathered in two independent blocks on chromosome 6, exhibited a false discovery rate below 25% when looking for associations with the facial lentigine score. The first block, in the 6p22 region, corresponded to intergenic SNPs and also exhibited a significant association with forehead lentigines (P = 1.37 × 10(-8) ). The second block, within the 6p21 HLA region, was associated with decreased HLA-C expression according to several eQTL databases. Interestingly, these SNPs were also in high linkage disequilibrium with the HLA-C*0701 allele (r(2)  = 0.95). We replicated an association recently found by GWAS in the IRF4 gene. Finally, a complementary study on 44 selected candidate SNPs revealed novel associations in the MITF gene. Overall, our results point to several mechanisms involved in the severity of facial lentigines, including HLA/immunity and the melanogenesis pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/pcmr.12502DOI Listing
September 2016

Transcriptome Analysis of Peripheral Blood in Chronic Inflammatory Demyelinating Polyradiculoneuropathy Patients Identifies TNFR1 and TLR Pathways in the IVIg Response.

Medicine (Baltimore) 2016 May;95(19):e3370

From the Sorbonne Universités (AR, J-CC, KT), UPMC Univ Paris 06, INSERM UMRS_1127, CIC_1422, CNRS UMR_7225, AP-HP, and ICM, Hôpital Pitié-Salpêtrière, Département des maladies du système nerveux; Hôpital Pitié Salpêtrière (RD, PR, KV), Département de Neurophysiologie Clinique; Plateforme Post-génomique P3S (WC), UPMC, Site Pitié Salpêtrière; IHU-A-ICM Bioinformatics/Biostatistics Core Facility (JG, VG), Paris; Hôpital de Bicêtre (CL, DA), Centre de Référence des Neuropathies Amyloïdes et autres Neuropathies Périphériques Rares, Le Kremlin-Bicêtre; and AP-HP, Hôpital Pitié Salpêtrière, Service de Médecine Interne, Institut E3M, Centre National de Référence Maladies auto-immunes Systémiques Rares, et Université Paris VI Pierre et Marie Curie, Sorbonnes Université, Paris, France (FCA).

We have studied the response to intravenous immunoglobulins (IVIg) by a transcriptomic approach in 11 chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) patients (CIDP duration = 6 [0.83-6.5] years). RNA was extracted from cells in whole blood collected before and 3 weeks after IVIg treatment, and hybridized on Illumina chips. After RNA quality controls, gene expression was analyzed using statistical tests fitted for microarrays (R software, limma package), and a pathway analysis was performed using DAVID software. We identified 52 genes with expression that varied significantly after IVIg (fold change [FC] > 1.2, P < 0.001, false discovery rate [FDR] <0.05). Among these 52 genes, 7 were related to immunity, 3 were related to the tumor necrosis factor (TNF)-α receptor 1 (TNFR1) pathway (inhibitor of caspase-activated DNase (ICAD): FC = 1.8, P = 1.7E-7, FDR = 0.004; p21 protein-activated kinase 2 [PAK2]: FC = 1.66, P = 2.6E-5, FDR = 0.03; TNF-α-induced protein 8-like protein 1 [TNFAIP8L1]: P = 1.00E-05, FDR = 0.026), and 2 were related to Toll-like receptors (TLRs), especially TLRs 7 and 9, and were implicated in autoimmunity. These genes were UNC93B1 (FC = 1.6, P = 2E-5, FDR = 0.03), which transports TLRs 7 and 9 to the endolysosomes, and RNF216 (FC = 1.5, P = 1E-05, FDR = 0.03), which promotes TLR 9 degradation. Pathway analysis showed that the TNFR1 pathway was significantly lessened by IVIg (enrichment score = 24, Fischer exact test = 0.003). TNF-α gene expression was higher in responder patients than in nonresponders; however, it decreased after IVIg in responders (P = 0.04), but remained stable in nonresponders. Our data suggest the actions of IVIg on the TNFR1 pathway and an original mechanism involving innate immunity through TLRs in CIDP pathophysiology and the response to IVIg. We conclude that responder patients have stronger inflammatory activity that is lessened by IVIg.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/MD.0000000000003370DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4902477PMC
May 2016

Low-Molecular-Weight Fucoidan Induces Endothelial Cell Migration via the PI3K/AKT Pathway and Modulates the Transcription of Genes Involved in Angiogenesis.

Mar Drugs 2015 Dec 18;13(12):7446-62. Epub 2015 Dec 18.

Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.

Low-molecular-weight fucoidan (LMWF) is a sulfated polysaccharide extracted from brown seaweed that presents antithrombotic and pro-angiogenic properties. However, its mechanism of action is not well-characterized. Here, we studied the effects of LMWF on cell signaling and whole genome expression in human umbilical vein endothelial cells and endothelial colony forming cells. We observed that LMWF and vascular endothelial growth factor had synergistic effects on cell signaling, and more interestingly that LMWF by itself, in the absence of other growth factors, was able to trigger the activation of the PI3K/AKT pathway, which plays a crucial role in angiogenesis and vasculogenesis. We also observed that the effects of LMWF on cell migration were PI3K/AKT-dependent and that LMWF modulated the expression of genes involved at different levels of the neovessel formation process, such as cell migration and cytoskeleton organization, cell mobilization and homing. This provides a better understanding of LMWF's mechanism of action and confirms that it could be an interesting therapeutic approach for vascular repair.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/md13127075DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699248PMC
December 2015

CX3CR1 deficiency promotes muscle repair and regeneration by enhancing macrophage ApoE production.

Nat Commun 2015 Dec 3;6:8972. Epub 2015 Dec 3.

Sorbonne Universités, UPMC Univ Paris 06, Inserm, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France.

Muscle injury triggers inflammation in which infiltrating mononuclear phagocytes are crucial for tissue regeneration. The interaction of the CCL2/CCR2 and CX3CL1/CX3CR1 chemokine axis that guides phagocyte infiltration is incompletely understood. Here, we show that CX3CR1 deficiency promotes muscle repair and rescues Ccl2(-/-) mice from impaired muscle regeneration as a result of altered macrophage function, not infiltration. Transcriptomic analysis of muscle mononuclear phagocytes reveals that Apolipoprotein E (ApoE) is upregulated in mice with efficient regeneration. ApoE treatment enhances phagocytosis by mononuclear phagocytes in vitro, and restores phagocytic activity and muscle regeneration in Ccl2(-/-) mice. Because CX3CR1 deficiency may compensate for defective CCL2-dependant monocyte recruitment by modulating ApoE-dependent macrophage phagocytic activity, targeting CX3CR1 expressed by macrophages might be a powerful therapeutic approach to improve muscle regeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms9972DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686853PMC
December 2015

An in vivo genetic reversion highlights the crucial role of Myb-Like, SWIRM, and MPN domains 1 (MYSM1) in human hematopoiesis and lymphocyte differentiation.

J Allergy Clin Immunol 2015 Dec 26;136(6):1619-1626.e5. Epub 2015 Jul 26.

INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France. Electronic address:

Background: Myb-Like, SWIRM, and MPN domains 1 (MYSM1) is a metalloprotease that deubiquitinates the K119-monoubiquitinated form of histone 2A (H2A), a chromatin marker associated with gene transcription silencing. Likewise, it has been reported that murine Mysm1 participates in transcription derepression of genes, among which are transcription factors involved in hematopoietic stem cell homeostasis, hematopoiesis, and lymphocyte differentiation. However, whether MYSM1 has a similar function in human subjects remains unclear. Here we describe a patient presenting with a complete lack of B lymphocytes, T-cell lymphopenia, defective hematopoiesis, and developmental abnormalities.

Objectives: We sought to characterize the underlying genetic cause of this syndrome.

Methods: We performed genome-wide homozygosity mapping, followed by whole-exome sequencing.

Results: Genetic analysis revealed that this novel disorder is caused by a homozygous MYSM1 missense mutation affecting the catalytic site within the deubiquitinase JAB1/MPN/Mov34 (JAMM)/MPN domain. Remarkably, during the course of our study, the patient recovered a normal immunohematologic phenotype. Genetic analysis indicated that this improvement originated from a spontaneous genetic reversion of the MYSM1 mutation in a hematopoietic stem cell.

Conclusions: We here define a novel human immunodeficiency and provide evidence that MYSM1 is essential for proper immunohematopoietic development in human subjects. In addition, we describe one of the few examples of spontaneous in vivo genetic cure of a human immunodeficiency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2015.06.008DOI Listing
December 2015

Patterns of chromosomal copy-number alterations in intrahepatic cholangiocarcinoma.

BMC Cancer 2015 Mar 14;15:126. Epub 2015 Mar 14.

Faculté de Médecine, Univ. Paris-Sud, Kremlin-Bicêtre, France.

Background: Intrahepatic cholangiocarcinomas (ICC) are relatively rare malignant tumors associated with a poor prognosis. Recent studies using genome-wide sequencing technologies have mainly focused on identifying new driver mutations. There is nevertheless a need to investigate the spectrum of copy number aberrations in order to identify potential target genes in the altered chromosomal regions. The aim of this study was to characterize the patterns of chromosomal copy-number alterations (CNAs) in ICC.

Methods: 53 patients having ICC with frozen material were selected. In 47 cases, DNA hybridization has been performed on a genomewide SNP array. A procedure with a segmentation step and a calling step classified genomic regions into copy-number aberration states. We identified the exclusively amplified and deleted recurrent genomic areas. These areas are those showing the highest estimated propensity level for copy loss (resp. copy gain) together with the lowest level for copy gain (resp. copy loss). We investigated ICC clustering. We analyzed the relationships between CNAs and clinico-pathological characteristics.

Results: The overall genomic profile of ICC showed many alterations with higher rates for the deletions. Exclusively deleted genomic areas were 1p, 3p and 14q. The main exclusively amplified genomic areas were 1q, 7p, 7q and 8q. Based on the exclusively deleted/amplified genomic areas, a clustering analysis identified three tumors groups: the first group characterized by copy loss of 1p and copy gain of 7p, the second group characterized by 1p and 3p copy losses without 7p copy gain, the last group characterized mainly by very few CNAs. From univariate analyses, the number of tumors, the size of the largest tumor and the stage were significantly associated with shorter time recurrence. We found no relationship between the number of altered cytobands or tumor groups and time to recurrence.

Conclusion: This study describes the spectrum of chromosomal aberrations across the whole genome. Some of the recurrent exclusive CNAs harbor candidate target genes. Despite the absence of correlation between CNAs and clinico-pathological characteristics, the co-occurence of 7p gain and 1p loss in a subgroup of patients may suggest a differential activation of EGFR and its downstream pathways, which may have a potential effect on targeted therapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12885-015-1111-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373066PMC
March 2015

Gene expression analyses identify Narp contribution in the development of L-DOPA-induced dyskinesia.

J Neurosci 2015 Jan;35(1):96-111

Sorbonne Universités, UPMC Univ Paris 06, Paris, France, Inserm, UMR-S 1127, ICM, Pitié-Salpêtrière Hospital, 75013 Paris, France, CNRS, UMR 7225, 75013 Paris, France, Assistance Publique Hôpitaux de Paris, Inserm, Clinical Investigation Center, CIC-1422, Pitié-Salpêtrière Hospital, 75013 Paris, France

In Parkinson's disease, long-term dopamine replacement therapy is complicated by the appearance of L-DOPA-induced dyskinesia (LID). One major hypothesis is that LID results from an aberrant transcriptional program in striatal neurons induced by L-DOPA and triggered by the activation of ERK. To identify these genes, we performed transcriptome analyses in the striatum in 6-hydroxydopamine-lesioned mice. A time course analysis (0-6 h after treatment with L-DOPA) identified an acute signature of 709 genes, among which genes involved in protein phosphatase activity were overrepresented, suggesting a negative feedback on ERK activation by l-DOPA. l-DOPA-dependent deregulation of 28 genes was blocked by pretreatment with SL327, an inhibitor of ERK activation, and 26 genes were found differentially expressed between highly and weakly dyskinetic animals after treatment with L-DOPA. The intersection list identified five genes: FosB, Th, Nptx2, Nedd4l, and Ccrn4l. Nptx2 encodes neuronal pentraxin II (or neuronal activity-regulated pentraxin, Narp), which is involved in the clustering of glutamate receptors. We confirmed increased Nptx2 expression after L-DOPA and its blockade by SL327 using quantitative RT-PCR in independent experiments. Using an escalating L-DOPA dose protocol, LID severity was decreased in Narp knock-out mice compared with their wild-type littermates or after overexpression of a dominant-negative form of Narp in the striatum. In conclusion, we have identified a molecular signature induced by L-DOPA in the dopamine-denervated striatum that is dependent on ERK and associated with LID. Here, we demonstrate the implication of one of these genes, Nptx2, in the development of LID.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.5231-13.2015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6605247PMC
January 2015

Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome.

Hum Mol Genet 2015 Jan 28;24(1):230-42. Epub 2014 Aug 28.

Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA

Primary cilia are sensory organelles present on most mammalian cells. The assembly and maintenance of primary cilia are facilitated by intraflagellar transport (IFT), a bidirectional protein trafficking along the cilium. Mutations in genes coding for IFT components have been associated with a group of diseases called ciliopathies. These genetic disorders can affect a variety of organs including the retina. Using whole exome sequencing in three families, we identified mutations in Intraflagellar Transport 172 Homolog [IFT172 (Chlamydomonas)] that underlie an isolated retinal degeneration and Bardet-Biedl syndrome. Extensive functional analyses of the identified mutations in cell culture, rat retina and in zebrafish demonstrated their hypomorphic or null nature. It has recently been reported that mutations in IFT172 cause a severe ciliopathy syndrome involving skeletal, renal, hepatic and retinal abnormalities (Jeune and Mainzer-Saldino syndromes). Here, we report for the first time that mutations in this gene can also lead to an isolated form of retinal degeneration. The functional data for the mutations can partially explain milder phenotypes; however, the involvement of modifying alleles in the IFT172-associated phenotypes cannot be excluded. These findings expand the spectrum of disease associated with mutations in IFT172 and suggest that mutations in genes originally reported to be associated with syndromic ciliopathies should also be considered in subjects with non-syndromic retinal dystrophy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddu441DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326328PMC
January 2015

Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human.

Nat Neurosci 2014 Jul 25;17(7):923-33. Epub 2014 May 25.

1] Inserm UMR-S 839, F75005, Paris, France. [2] Sorbonne Université, Université Pierre et Marie Curie, Paris, France. [3] Institut du Fer à Moulin, Paris, France. [4].

Neuronal migration disorders such as lissencephaly and subcortical band heterotopia are associated with epilepsy and intellectual disability. DCX, PAFAH1B1 and TUBA1A are mutated in these disorders; however, corresponding mouse mutants do not show heterotopic neurons in the neocortex. In contrast, spontaneously arisen HeCo mice display this phenotype, and our study revealed that misplaced apical progenitors contribute to heterotopia formation. While HeCo neurons migrated at the same speed as wild type, abnormally distributed dividing progenitors were found throughout the cortical wall from embryonic day 13. We identified Eml1, encoding a microtubule-associated protein, as the gene mutated in HeCo mice. Full-length transcripts were lacking as a result of a retrotransposon insertion in an intron. Eml1 knockdown mimicked the HeCo progenitor phenotype and reexpression rescued it. We further found EML1 to be mutated in ribbon-like heterotopia in humans. Our data link abnormal spindle orientations, ectopic progenitors and severe heterotopia in mouse and human.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn.3729DOI Listing
July 2014

Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis.

Nat Genet 2013 Nov 29;45(11):1353-60. Epub 2013 Sep 29.

1] John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA. [2].

Using the ImmunoChip custom genotyping array, we analyzed 14,498 subjects with multiple sclerosis and 24,091 healthy controls for 161,311 autosomal variants and identified 135 potentially associated regions (P < 1.0 × 10(-4)). In a replication phase, we combined these data with previous genome-wide association study (GWAS) data from an independent 14,802 subjects with multiple sclerosis and 26,703 healthy controls. In these 80,094 individuals of European ancestry, we identified 48 new susceptibility variants (P < 5.0 × 10(-8)), 3 of which we found after conditioning on previously identified variants. Thus, there are now 110 established multiple sclerosis risk variants at 103 discrete loci outside of the major histocompatibility complex. With high-resolution Bayesian fine mapping, we identified five regions where one variant accounted for more than 50% of the posterior probability of association. This study enhances the catalog of multiple sclerosis risk variants and illustrates the value of fine mapping in the resolution of GWAS signals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.2770DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3832895PMC
November 2013

Limitations of IL-2 and rapamycin in immunotherapy of type 1 diabetes.

Diabetes 2013 Sep 13;62(9):3120-31. Epub 2013 May 13.

Université Pierre et Marie Curie, Paris, France.

Administration of low-dose interleukin-2 (IL-2) alone or combined with rapamycin (RAPA) prevents hyperglycemia in NOD mice. Also, low-dose IL-2 cures recent-onset type 1 diabetes (T1D) in NOD mice, partially by boosting pancreatic regulatory T cells (Treg cells). These approaches are currently being evaluated in humans. Our objective was to study the effect of higher IL-2 doses (250,000-500,000 IU daily) as well as low-dose IL-2 (25,000 IU daily) and RAPA (1 mg/kg daily) (RAPA/IL-2) combination. We show that, despite further boosting of Treg cells, high doses of IL-2 rapidly precipitated T1D in prediabetic female and male mice and increased myeloid cells in the pancreas. Also, we observed that RAPA counteracted IL-2 effects on Treg cells, failed to control IL-2-boosted NK cells, and broke IL-2-induced tolerance in a reversible way. Notably, the RAPA/IL-2 combination failure to cure T1D was associated with an unexpected deleterious effect on glucose homeostasis at multiple levels, including β-cell division, glucose tolerance, and liver glucose metabolism. Our data help to understand the therapeutic limitations of IL-2 alone or RAPA/IL-2 combination and could lead to the design of improved therapies for T1D.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db13-0214DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749335PMC
September 2013

Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability.

Hum Mol Genet 2013 Aug 15;22(16):3239-49. Epub 2013 Apr 15.

INSERM U768, Paris, France.

Hoyeraal-Hreidarsson syndrome (HHS), a severe variant of dyskeratosis congenita (DC), is characterized by early onset bone marrow failure, immunodeficiency and developmental defects. Several factors involved in telomere length maintenance and/or protection are defective in HHS/DC, underlining the relationship between telomere dysfunction and these diseases. By combining whole-genome linkage analysis and exome sequencing, we identified compound heterozygous RTEL1 (regulator of telomere elongation helicase 1) mutations in three patients with HHS from two unrelated families. RTEL1 is a DNA helicase that participates in DNA replication, DNA repair and telomere integrity. We show that, in addition to short telomeres, RTEL1-deficient cells from patients exhibit hallmarks of genome instability, including spontaneous DNA damage, anaphase bridges and telomeric aberrations. Collectively, these results identify RTEL1 as a novel HHS-causing gene and highlight its role as a genomic caretaker in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddt178DOI Listing
August 2013

Whole-exome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation.

J Allergy Clin Immunol 2013 Jun 21;131(6):1594-603. Epub 2013 Mar 21.

INSERM U768, Paris, France.

Background: Primary immunodeficiencies are a rare group of inborn diseases characterized by a broad clinical and genetic heterogeneity. Substantial advances in the identification of the underlying molecular mechanisms can be achieved through the study of patients with increased susceptibility to specific infections and immune dysregulation. We evaluated 3 siblings from a consanguineous family presenting with EBV-associated B-cell lymphoproliferation at an early age (12, 7½, and 14 months, respectively) and profound naive T-cell lymphopenia.

Objective: On the basis of the hypothesis of a rare inborn immunodeficiency of autosomal recessive inheritance, we sought to characterize the underlying genetic defect.

Methods: We performed genome-wide homozygosity mapping, followed by whole-exome sequencing.

Results: We identified a homozygous inherited missense mutation in the gene encoding Coronin-1A (CORO1A) in the 3 siblings. This mutation, p. V134M, results in the substitution of an evolutionarily conserved amino acid within the β-propeller domain, which abrogates almost completely the protein expression in the patients' cells. In addition to a significant diminution of naive T-cell numbers, we found impaired development of a diverse T-cell repertoire, near-to-absent invariant natural killer T cells, and severely diminished mucosal-associated invariant T cell numbers.

Conclusions: Our findings define a new clinical entity of a primary immunodeficiency with increased susceptibility to EBV-induced lymphoproliferation in patients associated with hypomorphic Coronin-1A mutation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2013.01.042DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824285PMC
June 2013

Genome-wide association analysis identifies a susceptibility locus for pulmonary arterial hypertension.

Nat Genet 2013 May 17;45(5):518-21. Epub 2013 Mar 17.

Unité Mixte de Recherche en Santé (UMRS) 937, Université Pierre & Marie Curie (UPMC) Université Paris 6 and Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.

Pulmonary arterial hypertension (PAH) is a rare, severe disease resulting from progressive obliteration of small-caliber pulmonary arteries by proliferating vascular cells. PAH can occur without recognized etiology (idiopathic PAH), be associated with a systemic disease or occur as a heritable form, with BMPR2 mutated in approximately 80% of familial and 15% of idiopathic PAH cases. We conducted a genome-wide association study (GWAS) based on 2 independent case-control studies for idiopathic and familial PAH (without BMPR2 mutations), including a total of 625 cases and 1,525 healthy individuals. We detected a significant association at the CBLN2 locus mapping to 18q22.3, with the risk allele conferring an odds ratio for PAH of 1.97 (1.59-2.45; P = 7.47 × 10(-10)). CBLN2 is expressed in the lung, and its expression is higher in explanted lungs from individuals with PAH and in endothelial cells cultured from explanted PAH lungs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.2581DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983781PMC
May 2013

A genome-wide association study in Caucasian women points out a putative role of the STXBP5L gene in facial photoaging.

J Invest Dermatol 2013 Apr 6;133(4):929-35. Epub 2012 Dec 6.

Chaire de Bioinformatique, Conservatoire National des Arts et Métiers, Paris, France.

A genome-wide association study (GWAS) was conducted on 502 French middle-aged Caucasian women to identify genetic factors that may affect skin aging severity. A high-throughput Illumina Human Omni1-Quad beadchip was used. After single-nucleotide polymorphism (SNP) quality controls, 795,063 SNPs remained for analysis purposes. Possible stratification was first examined using the Eigenstrat method, and then the relationships between genotypes and four skin aging indicators (global photoaging, lentigines, wrinkles, and sagging) were investigated separately by linear regressions adjusted on age, smoking habits, lifetime sun exposure, hormonal status, and the two main Eigen vectors. One signal passed the Bonferroni threshold (P=1.53 × 10(-8)) and was significantly associated with global photoaging. It was also correlated with the wrinkling score and the sagging score. According to HapMap, this SNP, rs322458, was in linkage disequilibrium (LD) with intronic SNPs of the STXBP5L gene, which is expressed in the skin. In addition, it was also in LD with another SNP that increases the expression of the FBXO40 gene in the skin. These two genes, which were not previously described in the context of aging, may constitute good candidates for the investigation of molecular mechanisms of skin photoaging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/jid.2012.458DOI Listing
April 2013

Restoration of regulatory and effector T cell balance and B cell homeostasis in systemic lupus erythematosus patients through vitamin D supplementation.

Arthritis Res Ther 2012 Oct 17;14(5):R221. Epub 2012 Oct 17.

Introduction: Systemic lupus erythematosus (SLE) is a T and B cell-dependent autoimmune disease characterized by the appearance of autoantibodies, a global regulatory T cells (Tregs) depletion and an increase in Th17 cells. Recent studies have shown the multifaceted immunomodulatory effects of vitamin D, notably the expansion of Tregs and the decrease of Th1 and Th17 cells. A significant correlation between higher disease activity and lower serum 25-hydroxyvitamin D levels [25(OH)D] was also shown.

Methods: In this prospective study, we evaluated the safety and the immunological effects of vitamin D supplementation (100,000 IU of cholecalciferol per week for 4 weeks, followed by 100,000 IU of cholecalciferol per month for 6 months.) in 20 SLE patients with hypovitaminosis D.

Results: Serum 25(OH)D levels dramatically increased under vitamin D supplementation from 18.7±6.7 at day 0 to 51.4±14.1 (p<0.001) at 2 months and 41.5±10.1 ng/mL (p<0.001) at 6 months. Vitamin D was well tolerated and induced a preferential increase of naïve CD4+ T cells, an increase of regulatory T cells and a decrease of effector Th1 and Th17 cells. Vitamin D also induced a decrease of memory B cells and anti-DNA antibodies. No modification of the prednisone dosage or initiation of new immunosuppressant agents was needed in all patients. We did not observe SLE flare during the 6 months follow-up period.

Conclusions: This preliminary study suggests the beneficial role of vitamin D in SLE patients and needs to be confirmed in randomized controlled trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/ar4060DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580532PMC
October 2012

Translation termination efficiency modulates ATF4 response by regulating ATF4 mRNA translation at 5' short ORFs.

Nucleic Acids Res 2012 Oct 16;40(19):9557-70. Epub 2012 Aug 16.

UPMC Univ Paris 06, CNRS-FRE 3402, Biologie de l'ARN, 9 quai Saint Bernard, 75005 Paris, France.

The activating transcription factor 4 (ATF4) promotes transcriptional upregulation of specific target genes in response to cellular stress. ATF4 expression is regulated at the translational level by two short open reading frames (uORFs) in its 5'-untranslated region (5'-UTR). Here, we describe a mechanism regulating ATF4 expression in translation termination-deficient human cells. Using microarray analysis of total RNA and polysome-associated mRNAs, we show that depletion of the eucaryotic release factor 3a (eRF3a) induces upregulation of ATF4 and of ATF4 target genes. We show that eRF3a depletion modifies ATF4 translational control at regulatory uORFs increasing ATF4 ORF translation. Finally, we show that the increase of REDD1 expression, one of the upregulated targets of ATF4, is responsible for the mTOR pathway inhibition in eRF3a-depleted cells. Our results shed light on the molecular mechanisms connecting eRF3a depletion to mammalian target of rapamycin (mTOR) pathway inhibition and give an example of ATF4 activation that bypasses the signal transduction cascade leading to the phosphorylation of eIF2α. We propose that in mammals, in which the 5'-UTR regulatory elements of ATF4 mRNA are strictly conserved, variations in translation termination efficiency allow the modulation of the ATF4 response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/nar/gks762DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479206PMC
October 2012

RAD51 haploinsufficiency causes congenital mirror movements in humans.

Am J Hum Genet 2012 Feb 2;90(2):301-7. Epub 2012 Feb 2.

INSERM, U- CRICM, Hôpital Pitié-Salpêtrière, Paris, France.

Congenital mirror movements (CMM) are characterized by involuntary movements of one side of the body that mirror intentional movements on the opposite side. CMM reflect dysfunctions and structural abnormalities of the motor network and are mainly inherited in an autosomal-dominant fashion. Recently, heterozygous mutations in DCC, the gene encoding the receptor for netrin 1 and involved in the guidance of developing axons toward the midline, have been identified but CMM are genetically heterogeneous. By combining genome-wide linkage analysis and exome sequencing, we identified heterozygous mutations introducing premature termination codons in RAD51 in two families with CMM. RAD51 mRNA was significantly downregulated in individuals with CMM resulting from the degradation of the mutated mRNA by nonsense-mediated decay. RAD51 was specifically present in the developing mouse cortex and, more particularly, in a subpopulation of corticospinal axons at the pyramidal decussation. The identification of mutations in RAD51, known for its key role in the repair of DNA double-strand breaks through homologous recombination, in individuals with CMM reveals a totally unexpected role of RAD51 in neurodevelopment. These findings open a new field of investigation for researchers attempting to unravel the molecular pathways underlying bimanual motor control in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2011.12.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276668PMC
February 2012

KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: distinct phenotypes according to the nature of the mutations.

Eur J Hum Genet 2012 Jun 18;20(6):645-9. Epub 2012 Jan 18.

INSERM, U975, Paris, France.

The hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative diseases characterised by progressive spasticity in the lower limbs. The nosology of autosomal recessive forms is complex as most mapped loci have been identified in only one or a few families and account for only a small percentage of patients. We used next-generation sequencing focused on the SPG30 chromosomal region on chromosome 2q37.3 in two patients from the original linked family. In addition, wide genome scan and candidate gene analysis were performed in a second family of Palestinian origin. We identified a single homozygous mutation, p.R350G, that was found to cosegregate with the disease in the SPG30 kindred and was absent in 970 control chromosomes while affecting a strongly conserved amino acid at the end of the motor domain of KIF1A. Homozygosity and linkage mapping followed by mutation screening of KIF1A allowed us to identify a second mutation, p.A255V, in the second family. Comparison of the clinical features with the nature of the mutations of all reported KIF1A families, including those reported recently with hereditary sensory and autonomic neuropathy, suggests phenotype-genotype correlations that may help to understand the mechanisms involved in motor neuron degeneration. We have shown that mutations in the KIF1A gene are responsible for SPG30 in two autosomal recessive HSP families. In published families, the nature of the KIF1A mutations seems to be of good predictor of the underlying phenotype and vice versa.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ejhg.2011.261DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355258PMC
June 2012

Expansion of functionally anergic CD21-/low marginal zone-like B cell clones in hepatitis C virus infection-related autoimmunity.

J Immunol 2011 Dec 14;187(12):6550-63. Epub 2011 Nov 14.

Laboratoire I3 Immunologie, Immunopathologie, Immunothérapeutique, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7211 et INSERM U959, Groupe Hospitalier Pitié-Salpétrière, Université Pierre et Marie Curie, F-75013 Paris, France.

Homeostasis of peripheral B cell subsets is disturbed during chronic hepatitis C virus (HCV) infection, leading to the occurrence of autoimmunity and B cell lymphoproliferation. However, mechanisms by which HCV causes lymphoproliferation remain controversial. We report in this article on the elevated number of clonal CD21(-/low)IgM(+)CD27(+) marginal zone (MZ)-like B cells, which correlates with autoimmunity and lymphoproliferation in HCV patients. We found an increase in autoreactive BCRs using V(H)1-69 and V(H)4-34 genes in CD21(-/low) MZ B cells. CD21(-/low) MZ B cells showed impaired calcium-mediated signaling, did not upregulate activation markers, and did not proliferate in response to BCR triggering. CD21(-/low) MZ B cells also were prone to dying faster than their CD21(+) counterparts, suggesting that these B cells were anergic. CD21(-/low) MZ B cells, in contrast, remained responsive to TLR9 stimulation. Gene array analyses revealed the critical role of Early growth response 2 and Cbl-b in the induction of anergy. Therefore, HCV patients who display high frequencies of unresponsive CD21(-/low) MZ B cells are more susceptible to developing autoimmunity and/or lymphoproliferation. These cells remain in peripheral blood controlled by functional anergy instead of being eliminated, and chronic antigenic stimulation through TLR stimulation may create a favorable environment for breaking tolerance and activating these cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1102022DOI Listing
December 2011

CRB1 mutations in inherited retinal dystrophies.

Hum Mutat 2012 Feb 27;33(2):306-15. Epub 2011 Dec 27.

INSERM, U968, Paris, France.

Mutations in the CRB1 gene are associated with variable phenotypes of severe retinal dystrophies, ranging from leber congenital amaurosis (LCA) to rod-cone dystrophy, also called retinitis pigmentosa (RP). Moreover, retinal dystrophies resulting from CRB1 mutations may be accompanied by specific fundus features: preservation of the para-arteriolar retinal pigment epithelium (PPRPE) and retinal telangiectasia with exudation (also referred to as Coats-like vasculopathy). In this publication, we report seven novel mutations and classify over 150 reported CRB1 sequence variants that were found in more that 240 patients. The data from previous reports were used to analyze a potential correlation between CRB1 variants and the clinical features of respective patients. This meta-analysis suggests that the differential phenotype of patients with CRB1 mutations is due to additional modifying factors rather than particular mutant allele combination.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.21653DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3293109PMC
February 2012

A novel DFNB31 mutation associated with Usher type 2 syndrome showing variable degrees of auditory loss in a consanguineous Portuguese family.

Mol Vis 2011 15;17:1598-606. Epub 2011 Jun 15.

INSERM, U968, Paris, France.

Purpose: To identify the genetic defect of a consanguineous Portuguese family with rod-cone dystrophy and varying degrees of decreased audition.

Methods: A detailed ophthalmic and auditory examination was performed on a Portuguese patient with severe autosomal recessive rod-cone dystrophy. Known genetic defects were excluded by performing autosomal recessive retinitis pigmentosa (arRP) genotyping microarray analysis and by Sanger sequencing of the coding exons and flanking intronic regions of eyes shut homolog-drosophila (EYS) and chromosome 2 open reading frame 71 (C2orf71). Subsequently, genome-wide homozygosity mapping was performed in DNA samples from available family members using a 700K single nucleotide polymorphism (SNP) microarray. Candidate genes present in the significantly large homozygous regions were screened for mutations using Sanger sequencing.

Results: The largest homozygous region (~11 Mb) in the affected family members was mapped to chromosome 9, which harbors deafness, autosomal recessive 31 (DFNB31; a gene previously associated with Usher syndrome). Mutation analysis of DFNB31 in the index patient identified a novel one-base-pair deletion (c.737delC), which is predicted to lead to a truncated protein (p.Pro246HisfsX13) and co-segregated with the disease in the family. Ophthalmic examination of the index patient and the affected siblings showed severe rod-cone dystrophy. Pure tone audiometry revealed a moderate hearing loss in the index patient, whereas the affected siblings were reported with more profound and early onset hearing impairment.

Conclusions: We report a novel truncating mutation in DFNB31 associated with severe rod-cone dystrophy and varying degrees of hearing impairment in a consanguineous family of Portuguese origin. This is the second report of DFNB31 implication in Usher type 2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123164PMC
November 2011
-->