Publications by authors named "W Brent Edwards"

1,447 Publications

  • Page 1 of 1

Internal Tibial Forces and Moments During Graded Running.

J Biomech Eng 2021 Jul 28. Epub 2021 Jul 28.

Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada T2N 1N4.

The stress experienced by the tibia has contributions from the forces and moments acting on the tibia. We sought to quantify the influence of running grade on internal tibial forces and moments. Seventeen participants ran at 3.33 m/s on an instrumented treadmill at 0°, ±5°, and ±10° while motion data were captured. Ankle joint contact force was estimated from an anthropometrically-scaled musculoskeletal model using inverse dynamics-based static optimization. Internal tibial forces and moments were quantified at the distal 1/3rd of the tibia, by ensuring static equilibrium with all applied forces and moments. Downhill running conditions resulted in lower peak internal axial force (range of mean differences: -9 to -16%, p<0.001), lower peak internal anteroposterior force (-14 to -21%, p<0.001), and lower peak internal mediolateral force (-14 to -15%, p<0.001), compared to 0° and +5°. Furthermore, downhill conditions resulted in lower peak internal mediolateral moment (-11 to -21%, p<0.001), lower peak internal anteroposterior moment (-13 to -14%, p<0.001), and lower peak internal torsional moment (-9 to -21%, p<0.001), compared to 0°, +5°, and +10°. The +10° condition resulted in lower peak internal axial force (-7 to -9%, p<0.001) and lower peak internal mediolateral force (-9%, p=0.004), compared to 0° and +5°. These findings suggest that downhill running may be associated with lower tibial stresses than either level or uphill running.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4051924DOI Listing
July 2021

International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes.

J Thorac Cardiovasc Surg 2021 Jul 7. Epub 2021 Jul 7.

St Paul's Hospital, University of British Columbia, Vancouver, Canada.

This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtcvs.2021.06.019DOI Listing
July 2021

Summary: International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional, and research purposes.

J Thorac Cardiovasc Surg 2021 Jul 7. Epub 2021 Jul 7.

St Paul's Hospital, University of British Columbia, Vancouver, Canada; aeCedars Sinai Heart Institute, Los Angeles, Calif; afDivision of Cardiology, Columbia University Irving Medical Center/NY Presbyterian Hospital, New York, NY.

This International evidence-based nomenclature and classification consensus on the congenital bicuspid aortic valve and its aortopathy recognizes 3 types of bicuspid aortic valve: 1. Fused type, with 3 phenotypes: right-left cusp fusion, right-non cusp fusion and left-non cusp fusion; 2. 2-sinus type with 2 phenotypes: Latero-lateral and antero-posterior; and 3. Partial-fusion or forme fruste. This consensus recognizes 3 bicuspid-aortopathy types: 1. Ascending phenotype; root phenotype; and 3. extended phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtcvs.2021.05.008DOI Listing
July 2021

Summary: International Consensus Statement on Nomenclature and Classification of the Congenital Bicuspid Aortic Valve and Its Aortopathy, for Clinical, Surgical, Interventional and Research Purposes.

Ann Thorac Surg 2021 Jul 19. Epub 2021 Jul 19.

St Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.

This International evidence-based nomenclature and classification consensus on the congenital bicuspid aortic valve and its aortopathy recognizes 3 types of bicuspid aortic valve: 1. Fused type, with 3 phenotypes: right-left cusp fusion, right-non cusp fusion and left-non cusp fusion; 2. 2-sinus type with 2 phenotypes: Latero-lateral and antero-posterior; and 3. Partial-fusion or forme fruste. This consensus recognizes 3 bicuspid-aortopathy types: 1. Ascending phenotype; root phenotype; and 3. extended phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.athoracsur.2021.05.001DOI Listing
July 2021

International Consensus Statement on Nomenclature and Classification of the Congenital Bicuspid Aortic Valve and Its Aortopathy, for Clinical, Surgical, Interventional and Research Purposes.

Ann Thorac Surg 2021 Jul 19. Epub 2021 Jul 19.

St Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.

This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.athoracsur.2020.08.119DOI Listing
July 2021
-->