Publications by authors named "Vladimir Farkas"

35 Publications

Iron overload in aging mice induces exocrine pancreatic injury and fibrosis due to acinar cell loss.

Int J Mol Med 2021 Apr 2;47(4):1-8. Epub 2021 Mar 2.

Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia.

The relationship between hemochromatosis and diabetes has been well established, as excessive iron deposition has been reported to result in impaired function of the endocrine and exocrine pancreas. Therefore, the objective of the present study was to analyze the effects of iron accumulation on the pancreata and glucose homeostasis in a bone morphogenetic protein 6‑knockout () mouse model of hemochromatosis. The sera and pancreatic tissues of wild‑type (WT) and mice (age, 3 and 10 months) were subjected to biochemical and histological analyses. In addition, F‑fluorodeoxyglucose biodistribution was evaluated in the liver, muscle, heart, kidney and adipose tissue of both animal groups. The results demonstrated that 3‑month‑old mice exhibited iron accumulation preferentially in the exocrine pancreas, with no signs of pancreatic injury or fibrosis. No changes were observed in the glucose metabolism, as pancreatic islet diameter, insulin and glucagon secretion, blood glucose levels and glucose uptake in the liver, muscle and adipose tissue remained comparable with those in the WT mice. Aging mice presented with progressive iron deposits in the exocrine pancreas, leading to pancreatic degeneration and injury that was characterized by acinar atrophy, fibrosis and the infiltration of inflammatory cells. However, the aging mice exhibited unaltered blood glucose levels and islet structure, normal insulin secretion and moderately increased α‑cell mass compared with those in the age‑matched WT mice. Additionally, iron overload and pancreatic damage were not observed in the aging WT mice. These results supported a pathogenic role of iron overload in aging mice leading to iron‑induced exocrine pancreatic deficiency, whereas the endocrine pancreas retained normal function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2021.4893DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910010PMC
April 2021

Autologous blood coagulum containing rhBMP6 induces new bone formation to promote anterior lumbar interbody fusion (ALIF) and posterolateral lumbar fusion (PLF) of spine in sheep.

Bone 2020 09 22;138:115448. Epub 2020 May 22.

Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia. Electronic address:

In the present study, we evaluated an autologous bone graft substitute (ABGS) composed of recombinant human BMP6 (rhBMP6) dispersed within autologous blood coagulum (ABC) used as a physiological carrier for new bone formation in spine fusion sheep models. The application of ABGS included cervical cage for use in the anterior lumbar interbody fusion (ALIF), while for the posterolateral lumbar fusion (PLF) sheep model allograft devitalized bone particles (ALLO) were applied with and without use of instrumentation. In the ALIF model, ABGS (rhBMP6/ABC/cage) implants fused significantly when placed in between the L4-L5 vertebrae as compared to control (ABC/cage) which appears to have a fibrocartilaginous gap, as examined by histology and micro CT analysis at 16 weeks following surgery. In the PLF model, ABGS implants with or without ALLO showed a complete fusion when placed ectopically in the gutter bilaterally between two decorticated L4-L5 transverse processes at a success rate of 88% without instrumentation and at 80% with instrumentation; however the bone volume was 50% lower in the instrumentation group than without, as examined by histology, radiographs, micro CT analyses and biomechanical testing at 27 weeks following surgery. The newly formed bone was uniform within ABGS implants resulting in a biomechanically competent and histologically qualified fusion with an optimum dose in the range of 100 μg rhBMP6 per mL ABC, while in the implants that contained ALLO, the mineralized bone particles were substituted by the newly formed remodeling bone via creeping substitution. These findings demonstrate for the first time that ABGS (rhBMP6/ABC) without and with ALLO particles induced a robust bone formation with a successful fusion in sheep models of ALIF and PLF, and that autologous blood coagulum (ABC) can serve as a preferred physiological native carrier to induce new bone at low doses of rhBMP6 and to achieve a successful spinal fusion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2020.115448DOI Listing
September 2020

Role of Sirt3 in Differential Sex-Related Responses to a High-Fat Diet in Mice.

Antioxidants (Basel) 2020 Feb 20;9(2). Epub 2020 Feb 20.

Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia.

Metabolic homeostasis is differently regulated in males and females. Little is known about the mitochondrial Sirtuin 3 (Sirt3) protein in the context of sex-related differences in the development of metabolic dysregulation. To test our hypothesis that the role of Sirt3 in response to a high-fat diet (HFD) is sex-related, we measured metabolic, antioxidative, and mitochondrial parameters in the liver of Sirt3 wild-type (WT) and knockout (KO) mice of both sexes fed with a standard or HFD for ten weeks. We found that the combined effect of Sirt3 and an HFD was evident in more parameters in males (lipid content, glucose uptake, , , , Nrf2, MnSOD activity) than in females (protein damage and mitochondrial respiration), pointing towards a higher reliance of males on the effect of Sirt3 against HFD-induced metabolic dysregulation. The male-specific effects of an HFD also include reduced Sirt3 expression in WT and alleviated lipid accumulation and reduced glucose uptake in KO mice. In females, with a generally higher expression of genes involved in lipid homeostasis, either the HFD or Sirt3 depletion compromised mitochondrial respiration and increased protein oxidative damage. This work presents new insights into sex-related differences in the various physiological parameters with respect to nutritive excess and Sirt3.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/antiox9020174DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071037PMC
February 2020

Activation of brown adipose tissue in diet-induced thermogenesis is GC-C dependent.

Pflugers Arch 2020 03 15;472(3):405-417. Epub 2020 Jan 15.

School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia.

Uroguanylin (UGN) is released from the intestine after a meal. When applied in brain ventricles, UGN increases expression of markers of thermogenesis in brown adipose tissue (BAT). Therefore, we determine the effects of its receptor, guanylate cyclase C (GC-C), on mouse interscapular BAT (iBAT) activity during diet-induced thermogenesis (DIT). The activation of iBAT after a meal is diminished in GC-C KO mice, decreased in female wild type (WT) mice, and abolished in old WT animals. The activation of iBAT after a meal is the highest in male WT animals which leads to an increase in GC-C expression in the hypothalamus, an increase in iBAT volume by aging, and induction of iBAT markers of thermogenesis. In contrast to iBAT activation after a meal, iBAT activation after a cold exposure could still exist in GC-C KO mice and it is significantly higher in female WT mice. The expression of GC-C in the proopiomelanocortin neurons of the arcuate nucleus of the hypothalamus but not in iBAT suggests central regulation of iBAT function. The iBAT activity during DIT has significantly reduced in old mice but an intranasal application of UGN leads to an increase in iBAT activity in a dose-dependent manner which is in strong negative correlation to glucose concentration in blood. This activation was not present in GC-C KO mice. Our results suggest the physiological role of GC-C on the BAT regulation and its importance in the regulation of glucose homeostasis and the development of new therapy for obesity and insulin resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-020-02347-8DOI Listing
March 2020

Mechanisms of redundancy and specificity of the Aspergillus fumigatus Crh transglycosylases.

Nat Commun 2019 04 10;10(1):1669. Epub 2019 Apr 10.

School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.

Fungal cell wall synthesis is achieved by a balance of glycosyltransferase, hydrolase and transglycosylase activities. Transglycosylases strengthen the cell wall by forming a rigid network of crosslinks through mechanisms that remain to be explored. Here we study the function of the Aspergillus fumigatus family of five Crh transglycosylases. Although crh genes are dispensable for cell viability, simultaneous deletion of all genes renders cells sensitive to cell wall interfering compounds. In vitro biochemical assays and localisation studies demonstrate that this family of enzymes functions redundantly as transglycosylases for both chitin-glucan and chitin-chitin cell wall crosslinks. To understand the molecular basis of this acceptor promiscuity, we solved the crystal structure of A. fumigatus Crh5 (AfCrh5) in complex with a chitooligosaccharide at the resolution of 2.8 Å, revealing an extensive elongated binding cleft for the donor (-4 to -1) substrate and a short acceptor (+1 to +2) binding site. Together with mutagenesis, the structure suggests a "hydrolysis product assisted" molecular mechanism favouring transglycosylation over hydrolysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-09674-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458159PMC
April 2019

Engineering the acceptor substrate specificity in the xyloglucan endotransglycosylase TmXET6.3 from nasturtium seeds (Tropaeolum majus L.).

Plant Mol Biol 2019 May 13;100(1-2):181-197. Epub 2019 Mar 13.

School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China.

Key Message: The knowledge of substrate specificity of XET enzymes is important for the general understanding of metabolic pathways to challenge the established notion that these enzymes operate uniquely on cellulose-xyloglucan networks. Xyloglucan xyloglucosyl transferases (XETs) (EC 2.4.1.207) play a central role in loosening and re-arranging the cellulose-xyloglucan network, which is assumed to be the primary load-bearing structural component of plant cell walls. The sequence of mature TmXET6.3 from Tropaeolum majus (280 residues) was deduced by the nucleotide sequence analysis of complete cDNA by Rapid Amplification of cDNA Ends, based on tryptic and chymotryptic peptide sequences. Partly purified TmXET6.3, expressed in Pichia occurred in N-glycosylated and unglycosylated forms. The quantification of hetero-transglycosylation activities of TmXET6.3 revealed that (1,3;1,4)-, (1,6)- and (1,4)-β-D-glucooligosaccharides were the preferred acceptor substrates, while (1,4)-β-D-xylooligosaccharides, and arabinoxylo- and glucomanno-oligosaccharides were less preferred. The 3D model of TmXET6.3, and bioinformatics analyses of identified and putative plant xyloglucan endotransglycosylases (XETs)/hydrolases (XEHs) of the GH16 family revealed that H94, A104, Q108, K234 and K237 were the key residues that underpinned the acceptor substrate specificity of TmXET6.3. Compared to the wild-type enzyme, the single Q108R and K237T, and double-K234T/K237T and triple-H94Q/A104D/Q108R variants exhibited enhanced hetero-transglycosylation activities with xyloglucan and (1,4)-β-D-glucooligosaccharides, while those with (1,3;1,4)- and (1,6)-β-D-glucooligosaccharides were suppressed; the incorporation of xyloglucan to (1,4)-β-D-glucooligosaccharides by the H94Q variant was influenced most extensively. Structural and biochemical data of non-specific TmXET6.3 presented here extend the classic XET reaction mechanism by which these enzymes operate in plant cell walls. The evaluations of TmXET6.3 transglycosylation activities and the incidence of investigated residues in other members of the GH16 family suggest that a broad acceptor substrate specificity in plant XET enzymes could be more widespread than previously anticipated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-019-00852-8DOI Listing
May 2019

Cognitive, behavioral and metabolic effects of oral galactose treatment in the transgenic Tg2576 mice.

Neuropharmacology 2019 04 17;148:50-67. Epub 2018 Dec 17.

Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, HR-10 000, Zagreb, Croatia; Research Centre of Excellence of Fundamental, Clinical and Translational Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, HR-10 000, Zagreb, Croatia. Electronic address:

Alzheimer's disease (AD) is the most common neurodegenerative disorder associated with insulin resistance and glucose hypometabolism in the brain. Oral administration of galactose, a nutrient that provides an alternative source of energy, prevents and ameliorates early cognitive impairment in a streptozotocin-induced model (STZ-icv) of the sporadic AD (sAD). Here we explored the influence of 2-month oral galactose treatment (200 mg/kg/day) in the familial AD (fAD) by using 5- (5M) and 10- (10M) month-old transgenic Tg2576 mice mimicking the presymptomatic and the mild stage of fAD, and compared it to that observed in 7-month old STZ-icv rats mimicking mild-to-moderate sAD. Cognitive and behavioral performance was tested by Morris Water Maze, Open Field and Elevated Plus Maze tests, and metabolic status by intraperitoneal glucose tolerance test and fluorodeoxyglucose Positron-Emission Tomography scan. The level of insulin, glucagon-like peptide-1 (GLP-1) and soluble amyloid β1-42 (sAβ1-42) was measured by ELISA and the protein expression of insulin receptor (IR), glycogen synthase kinase-3β (GSK-3β), and pre-/post-synaptic markers by Western blot analysis. Although galactose normalized alterations in cerebral glucose metabolism in all Tg2576 mice (5M+2M; 10M+2M) and STZ-icv rats, it did not improve cognitive impairment in either model. Improvement of reduced grooming behavior and normalization in reduced plasma insulin levels were seen only in 5M+2M Tg2576 mice while in 10M+2M Tg2576 mice oral galactose induced metabolic exacerbation at the level of plasma insulin, GLP-1 homeostasis and glucose intolerance, and additionally increased hippocampal sAβ1-42 level, decreased IR expression and increased GSK-3β activity. The results indicate that therapeutic potential of oral galactose seems to depend on the stage and the type/model of AD and to differ in the absence and the presence of AD-like pathology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2018.12.018DOI Listing
April 2019

Glucagon-like peptide-1 mediates effects of oral galactose in streptozotocin-induced rat model of sporadic Alzheimer's disease.

Neuropharmacology 2018 06 28;135:48-62. Epub 2018 Feb 28.

Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, HR-10 000 Zagreb, Croatia; Research Centre of Excellence for Fundamental Clinical and Translational Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, HR-10 000 Zagreb, Croatia. Electronic address:

Insulin resistance and metabolic dysfunction in the brain are considered to be the pathophysiological core of sporadic Alzheimer's disease (sAD). In line with that fact, nutrients that could have therapeutic effects at this level have been investigated as possible targets in AD therapy. Galactose, an epimer of glucose, may serve as an alternative source of energy, and given orally may stimulate secretion of the incretin hormone glucagon-like peptide-1 (GLP-1). Our preliminary research indicated that oral galactose might prevent development of memory impairment in a rat model of sAD generated by intracerebroventricular administration of streptozotocin (STZ-icv). Here, we explored whether chronic oral galactose treatment could have beneficial effects on cognitive deficits already manifested at the time of initiation of galactose treatment in adult STZ-icv rats (treatment initiated 1 month after STZ-icv injection). The results clearly show that a 2-month exposure to oral galactose (200 mg/kg/day administered in a drink ad libitum) normalises impaired learning and memory functions. Memory improvement was accompanied by an improvement in brain glucose hypometabolism measured by fluorodeoxyglucose-positron emission tomography neuroimaging and by increments in active GLP-1 plasma levels as well as by an increased expression of GLP-1 receptors in the hippocampus and hypothalamus. Our findings provide strong evidence of beneficial effects of oral galactose treatment in the STZ-icv rat model of sAD and present possible underlying mechanisms including both direct effects of galactose within the brain and indirect GLP-1-induced neuroprotective effects that might open a new, dietary-based strategy in sAD treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2018.02.027DOI Listing
June 2018

'Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity'.

Cell Microbiol 2016 09 16;18(9):1239-50. Epub 2016 Jun 16.

Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA.

The cross-linking of polysaccharides to assemble new cell wall in fungi requires transglycosylation mechanisms by which preexisting glycosidic linkages are broken and new linkages are created between the polysaccharides. The molecular mechanisms for these processes, which are essential for fungal cell biology, are only now beginning to be elucidated. Recent development of in vivo and in vitro biochemical approaches has allowed characterization of important aspects about the formation of chitin-glucan covalent cell wall cross-links by cell wall transglycosylases of the CRH family and their biological function. Covalent linkages between chitin and glucan mediated by Crh proteins control morphogenesis and also play important roles in the remodeling of the fungal cell wall as part of the compensatory responses necessary to counterbalance cell wall stress. These enzymes are encoded by multigene families of redundant proteins very well conserved in fungal genomes but absent in mammalian cells. Understanding the molecular basis of fungal adaptation to cell wall stress through these and other cell wall remodeling enzymatic activities offers an opportunity to explore novel antifungal treatments and to identify potential fungal virulence factors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cmi.12615DOI Listing
September 2016

Two Variants of a High-Throughput Fluorescent Microplate Assay of Polysaccharide Endotransglycosylases.

Appl Biochem Biotechnol 2016 Apr 11;178(8):1652-65. Epub 2016 Jan 11.

Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.

Polysaccharide endotransglycosylases (PETs) are the cell wall-modifying enzymes of fungi and plants. They catalyze random endo-splitting of the polysaccharide donor molecule and transfer of the newly formed reducing sugar residue to the nonreducing end of an acceptor molecule which can be a polysaccharide or an oligosaccharide. Owing to their important role in the cell wall formation, the inhibition of PETs represents an attractive strategy in the fight against fungal infections. We have elaborated two variants of a versatile high-throughput microplate fluorimetric assay that could be used for effective identification of PETs and screening of their inhibitors. Both assays use the respective polysaccharides as the donors and sulforhodamine-labeled oligosaccharides as the acceptors but differ from each other by mode of how the labeled polysaccharide products of transglycosylation are separated from the unreacted oligosaccharide acceptors. In the first variant, the reactions take place in a layer of agar gel laid on the bottoms of the wells of a microtitration plate. After the reaction, the high-Mr transglycosylation products are precipitated with 66 % ethanol and retained within the gel while the low-Mr products and the unreacted acceptors are washed out. In the second variant, the donor polysaccharides are adsorbed to the surface of a microplate well and remain adsorbed there also after becoming labeled in the course of the transglycosylation reaction whereas the unused low-Mr acceptors are washed out. As a proof of versatility, assays of heterologously expressed transglycosylases ScGas1, ScCrh1, and ScCrh2 from the yeast Saccharomyces cerevisiae, CaPhr1 and CaPhr2 from Candida albicans, and of a plant xyloglucan endotransglycosylase (XET) are demonstrated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-015-1973-8DOI Listing
April 2016

Diminished Resistance to Hyperoxia in Brains of Reproductively Senescent Female CBA/H Mice.

Med Sci Monit Basic Res 2015 Sep 16;21:191-9. Epub 2015 Sep 16.

Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.

BACKGROUND We have explored sex differences in ability to maintain redox balance during acute oxidative stress in brains of mice. We aimed to determine if there were differences in oxidative/antioxidative status upon hyperoxia in brains of reproductively senescent CBA/H mice in order to elucidate some of the possible mechanisms of lifespan regulation. MATERIAL AND METHODS The brains of 12-month-old male and female CBA/H mice (n=9 per sex and treatment) subjected to 18-h hyperoxia were evaluated for lipid peroxidation (LPO), antioxidative enzyme expression and activity - superoxide dismutase 1 and 2 (Sod-1, Sod-2), catalase (Cat), glutathione peroxidase 1 (Gpx-1), heme-oxygenase 1 (Ho-1), nad NF-E2-related factor 2 (Nrf2), and for 2-deoxy-2-[18F] fluoro-D-glucose (18FDG) uptake. RESULTS No increase in LPO was observed after hyperoxia, regardless of sex. Expression of Nrf-2 showed significant downregulation in hyperoxia-treated males (p=0.001), and upregulation in hyperoxia-treated females (p=0.023). Also, in females hyperoxia upregulated Sod-1 (p=0.046), and Ho-1 (p=0.014) genes. SOD1 protein was upregulated in both sexes after hyperoxia (p=0.009 for males and p=0.011 for females). SOD2 protein was upregulated only in females (p=0.008) while CAT (p=0.026) and HO-1 (p=0.042) proteins were increased after hyperoxia only in males. Uptake of 18FDG was decreased after hyperoxia in the back brain of females. CONCLUSIONS We found that females at their reproductive senescence are more susceptible to hyperoxia, compared to males. We propose this model of hyperoxia as a useful tool to assess sex differences in adaptive response to acute stress conditions, which may be partially responsible for observed sex differences in longevity of CBA/H mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12659/MSMBR.895356DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588673PMC
September 2015

Catalytic properties of Phr family members of cell wall glucan remodeling enzymes: implications for the adaptation of Candida albicans to ambient pH.

FEMS Yeast Res 2015 Mar 10;15(2). Epub 2015 Mar 10.

Università degli Studi di Milano, Dipartimento di Bioscienze, Via Celoria 26, 20133 Milano, Italy

Fungal wall formation is a dynamic process involving several categories of enzymes. The GH72 family of β(1,3)-glucanosyltransferases is essential for the determination of cell shape, for cell integrity and for virulence in pathogenic fungi. Candida albicans has five GH72 genes: PHR1 and PHR2 are pH dependent, the first being expressed at pH ≥ 6 and repressed at lower pH and the second regulated in the opposite manner, PGA4 is transcribed independently of pH whereas PHR3 and PGA5 have low expression levels. To characterize the catalytic properties of Phr1p-2p and probe the activity of Pga4p, we heterologously expressed these proteins and used a fluorescent assay based on the transfer of oligosaccharyl units from a donor to a sulforhodamine-labeled acceptor. Phr1p-2p used exclusively β-1,3-glucan or cell wall glucan as donor and laminarin-derived oligosaccharides as acceptor. The acceptor efficiency increased with the length of the oligosaccharide. The temperature optimum was 30°C. The pH optimum was 5.8 for Phr1p and 3 for Phr2p. Overall, adaptation to pH of C. albicans appears to involve a fine interplay among the pH-dependent activity of Phr1p and Phr2p, the pH-regulated expression of their genes and protein stability. Unexpectedly, Pga4p was inactive suggesting that it turned into a structural mannoprotein.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsyr/fou011DOI Listing
March 2015

Structural and functional analysis of yeast Crh1 and Crh2 transglycosylases.

FEBS J 2015 Feb 19;282(4):715-31. Epub 2015 Jan 19.

Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Spain.

Covalent cross-links between chitin and glucan at the yeast cell wall are created by the transglycosylase activity of redundant proteins Crh1 and Crh2, with cleavage of β-1,4 linkages of the chitin backbone and transfer of the generated molecule containing newly created reducing end onto the glucan acceptor. A three-dimensional structure of Crh1 was generated by homology modeling based on the crystal structure of bacterial 1,3-1,4-β-d-glucanase, followed by site-directed mutagenesis to obtain molecular insights into how these enzymes achieve catalysis. The residues of both proteins that are involved in their catalytic and binding activities have been characterized by measuring the ability of yeast cells expressing different versions of these proteins to transglycosylate oligosaccharides derived from β-1,3-glucan, β-1,6-glucan and chitin to the chitin at the cell wall. Within the catalytic site, residues E134 and E138 of Crh1, as well as E166 and E170 of Crh2, corresponding to the nucleophile and general acid/base, and also the auxiliary D136 and D168 of Crh1 and Crh2, respectively, are shown to be essential for catalysis. Mutations of aromatic residues F152, Y160 and W219, located within the carbohydrate-binding cleft of the Crh1 model, also affect the transglycosylase activity. Unlike Crh1, Crh2 contains a putative carbohydrate-binding module (CBM18) of unknown function. Modeling and functional analysis of site-directed mutant residues of this CBM identified essential amino acids for protein folding and stability, as well as residues that tune the catalytic activity of Crh2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.13176DOI Listing
February 2015

A novel fluorescence assay and catalytic properties of Crh1 and Crh2 yeast cell wall transglycosylases.

Biochem J 2013 Nov;455(3):307-18

*Institute of Chemistry, Center for Glycomics, Department of Glycobiology, Slovak Academy of Sciences, 84538 Bratislava, Slovakia.

The mechanical properties of fungal cell walls are largely determined by composition and mutual cross-linking of their macromolecular components. Previous work showed that the Crh proteins are required for the formation of cross-links between chitin and glucan at the Saccharomyces cerevisiae cell wall. In the present study, the proteins encoded by CRH1 and CRH2 were heterologously expressed in Pichia pastoris and a sensitive fluorescence in vitro soluble assay was devised for determination of their transglycosylating activities. Both proteins act as chitin transglycosylases; they use soluble chitin derivatives, such as carboxymethyl chitin, glycol-chitin and/or N-acetyl chito-oligosaccharides of DP (degree of polymerization)≥5 as the oligoglycosyl donors, and oligosaccharides derived from chitin, β-(1,3)-glucan (laminarin) and β-(1,6)-glucan (pustulan), fluorescently labelled with sulforhodamine or FITC as acceptors. The minimal number of intact hexopyranose units required by Crh1 and/or Crh2 in the molecule of the acceptor oligosaccharide was two and the effectivity of the acceptor increased with the increasing length of its oligosaccharide chain. Products of the transglycosylation reactions were hybrid molecules composed of the acceptor and portions of carboxymethyl chitin attached to its non-reducing end. Both proteins exhibited a weak chitinolytic activity in different assays whereby the ratio of endo- compared with exo-chitinase activity was approximately 4-fold higher in Crh1 than in Crh2. The pH optimum of both enzymes was 3.5 and the optimum temperature was 37°C. The results obtained in vitro with different fluorescently labelled oligosaccharides as artificial chitin acceptors corroborated well with those observed in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20130354DOI Listing
November 2013

Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.

J Biol Chem 2012 Nov 17;287(47):39429-38. Epub 2012 Sep 17.

Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark.

Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M112.396598DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3501085PMC
November 2012

Catalytic properties of the Gas family β-(1,3)-glucanosyltransferases active in fungal cell-wall biogenesis as determined by a novel fluorescent assay.

Biochem J 2011 Sep;438(2):275-82

Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia.

BGTs [β-(1,3)-glucanosyltransglycosylases; EC 2.4.1.-] of the GH72 (family 72 of glycosylhydrolases) are GPI (glycosylphosphatidylinositol)-anchored proteins that play an important role in the biogenesis of fungal cell walls. They randomly cleave glycosidic linkages in β-(1,3)-glucan chains and ligate the polysaccharide portions containing newly formed reducing ends to C(3)(OH) at non-reducing ends of other β-(1,3)-glucan molecules. We have developed a sensitive fluorescence-based method for the assay of transglycosylating activity of GH72 enzymes. In the new assay, laminarin [β-(1,3)-glucan] is used as the glucanosyl donor and LamOS (laminarioligosaccharides) fluorescently labelled with SR (sulforhodamine) serve as the acceptors. The new fluorescent assay was employed for partial biochemical characterization of the heterologously expressed Gas family proteins from the yeast Saccharomyces cerevisiae. All the Gas enzymes specifically used laminarin as the glucanosyl donor and a SR-LamOS of DP (degree of polymerization) ≥5 as the acceptors. Gas proteins expressed in distinct stages of the yeast life cycle showed differences in their pH optima. Gas1p and Gas5p, which are expressed during vegetative growth, had the highest activity at pH 4.5 and 3.5 respectively, whereas the sporulation-specific Gas2p and Gas4p were most active between pH 5 and 6. The novel fluorescent assay provides a suitable tool for the screening of potential glucanosyltransferases or their inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20110405DOI Listing
September 2011

Effect of the label of oligosaccharide acceptors on the kinetic parameters of nasturtium seed xyloglucan endotransglycosylase (XET).

Carbohydr Res 2011 Feb 7;346(2):357-61. Epub 2010 Sep 7.

Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia.

Fluorescently labeled derivatives of a xyloglucan (XG) nonasaccharide Glc(4)Xyl(3)Gal(2) (XLLG) were used as glycosyl acceptors in assays of xyloglucan endotransglycosylase (XET) from germinated nasturtium (Tropaeolum majus) seeds. We have investigated how the type of the oligosaccharide label influences the kinetic parameters of the reaction. The fluorescent probes used to label XLLG were anthranilic acid (AA), 8-aminonaphtalene-1,3,6-trisulfonic acid (ANTS), fluorescein isothiocyanate (FITC), and sulforhodamine (SR), respectively. The obtained data were compared with those of the reactions where aldose and/or alditol forms of tritium-labeled xyloglucan-derived nonasaccharide served as the respective acceptors. Modification at C-1 of the reducing-end glucose in XLLG by substitution with the fluorophore markedly affected the kinetic parameters of the reaction. The Michaelis constants K(m) for individual acceptors increased in the order [1-(3)H]XLLGXLLG-SR>XLLG-ANTS>[1-(3)H]XLLGol>[1-(3)H]XLLG>XLLG-AA. Catalytic efficiency (expressed as k(cat)/K(m)) with XLLG labeled with SR or FITC was 15 and 28 times, respectively, higher than with the tritium-labeled natural substrate [1-(3)H]XLLG. Comparison of the kinetic parameters found with acceptors labeled with different types of labels enables to select the most effective substrates for the high-throughput assays of XET.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2010.09.004DOI Listing
February 2011

Xyloglucan xyloglucosyl transferases from barley (Hordeum vulgare L.) bind oligomeric and polymeric xyloglucan molecules in their acceptor binding sites.

Biochim Biophys Acta 2010 Jul 11;1800(7):674-84. Epub 2010 Apr 11.

Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 As, Norway.

Background: Xyloglucan xyloglucosyl transferases (EC 2.4.1.207), known as xyloglucan endotransglycosylases (XETs) use a disproportionation reaction mechanism and modulate molecular masses of xyloglucans. However, it is not known precisely how these size modulations and transfer reactions occur with polymeric acceptor substrates.

Methods: cDNAs encoding three barley HvXETs were expressed in Pichia pastoris and reaction mechanism and molecular properties of HvXETs were investigated.

Results: Significant differences in catalytic efficiencies (k(cat)*K(m)(-)(1)) were observed and these values were 0.01, 0.02 and 0.2 s(-)(1)*mg(-)(1)*ml for HvXET3, HvXET4 and HvXET6, respectively, using tamarind xyloglucan as a donor substrate. HPLC analyses of the reaction mixtures showed that HvXET6 followed a stochastic reaction mechanism with fluorescently or radioactively labelled tamarind xyloglucans and xyloglucan-derived oligosaccharides. The analyses from two successive reaction cycles revealed that HvXET6 could increase or decrease molecular masses of xyloglucans. In the first reaction cycle equilibrium was reached under limiting donor substrate concentrations, while xyloglucan mass modulations occurred during the second reaction cycle and depended on the molecular masses of incoming acceptors. Deglycosylation experiments indicated that occupancy of a singular N-glycosylation site was required for activity of HvXET6. Experiments with organic solvents demonstrated that HvXET6 tolerated DMSO, glycerol, methanol and 1,4-butanediol in 20% (v/v) concentrations.

Conclusions: The two-phase experiments demonstrated that large xyloglucan molecules can bind in the acceptor sites of HvXETs.

General Significance: The results characterise donor and acceptor binding sites in plant XET, report that HvXETs act on xyloglucan donor substrates adsorbed onto nanocrystals and that HvXETs tolerate the presence of organic solvents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2010.04.001DOI Listing
July 2010

Xyloglucan endotransglycosylases (XETs) from germinating nasturtium (Tropaeolum majus) seeds: isolation and characterization of the major form.

Plant Physiol Biochem 2010 Apr 28;48(4):207-15. Epub 2010 Jan 28.

Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia.

Five forms of xyloglucan endotransglycosylase/hydrolase (XTH) differing in their isoelectric points (pI) were detected in crude extracts from germinating nasturtium seeds. Without further fractionation, all five forms behaved as typical endotransglycosylases since they exhibited only transglycosylating (XET) activity and no xyloglucan-hydrolysing (XEH) activity. They all were glycoproteins with identical molecular mass, and deglycosylation led to a decrease in molecular mass from approximately 29 to 26.5 kDa. The major enzyme form having pI 6.3, temporarily designated as TmXET(6.3), was isolated and characterized. Molecular and biochemical properties of TmXET(6.3) confirmed its distinction from the XTHs described previously from nasturtium. The enzyme exhibited broad substrate specificity by transferring xyloglucan or hydroxyethylcellulose fragments not only to oligoxyloglucosides and cello-oligosaccharides but also to oligosaccharides derived from beta-(1,4)-d-glucuronoxylan, beta-(1,6)-d-glucan, mixed-linkage beta-(1,3; 1,4)-d-glucan and at a relatively low rate also to beta-(1,3)-gluco-oligosaccharides. The transglycosylating activity with xyloglucan as donor and cello-oligosaccharides as acceptors represented 4.6%, with laminarioligosaccharides 0.23%, with mixed-linkage beta-(1,3; 1,4)-d-gluco-oligosaccharides 2.06%, with beta-(1,4)-d-glucuronoxylo-oligosaccharides 0.31% and with beta-(1,6)-d-gluco-oligosaccharides 0.69% of that determined with xyloglucan oligosaccharides as acceptors. Based on the sequence homology of tryptic fragments with the sequences of known XTHs, the TmXET(6.3) was classified into group II of the XTH phylogeny of glycoside hydrolase family GH16.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2010.01.016DOI Listing
April 2010

Barley xyloglucan xyloglucosyl transferases bind xyloglucan-derived oligosaccharides in their acceptor-binding regions in multiple conformational states.

Arch Biochem Biophys 2010 Apr 1;496(1):61-8. Epub 2010 Feb 1.

Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 As, Norway.

Three barley xyloglucan endotransglycosylases (HvXETs), known as xyloglucan xyloglucosyl transferases (EC 2.4.1.207), were subjected to kinetic and computational docking studies. The k(cat) x K(m)(-1) values with the reduced [3H]-labelled XXXG, XXLG/XLXG and XLLG acceptor substrates were 0.02 x 10(-2), 0.1 x 10(-2) and 3.2 x 10(-2) s(-1) microM(-1), while the K(m) constants were 10.6, 8.6 and 5.3 mM, obtained for HvXET3, HvXET4 and HvXET6, respectively. Docking of XLLG in acceptor-binding regions revealed that at least two conformational states were likely to participate in all isoforms. The assessments of kinetic and computational data indicated that the disposition of aromatic residues at the entrance to the active sites and the flexibility of proximal COOH-terminal loops could orient acceptors more or less favourably during binding, thus leading to tighter or weaker K(m) constants. The data suggested that binding of acceptors in HvXETs is guided by contributions from the conserved residues in the active sites and by the of neighbouring loops.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2010.01.011DOI Listing
April 2010

Polysaccharide microarrays for high-throughput screening of transglycosylase activities in plant extracts.

Glycoconj J 2010 Jan 2;27(1):79-87. Epub 2009 Dec 2.

Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 84538, Bratislava, Slovakia.

Polysaccharide transglycosylases catalyze disproportionation of polysaccharide molecules by cleaving glycosidic linkages in polysaccharide chains and transferring their cleaved portions to hydroxyl groups at the non-reducing ends of other polysaccharide or oligosaccharide molecules. In plant cell walls, transglycosylases have a potential to catalyze both cross-linking of polysaccharide molecules and grafting of newly arriving polysaccharide molecules into the cell wall structure during cell growth. Here we describe a polysaccharide microarray in form of a glycochip permitting simultaneous high-throughput monitoring of multiple transglycosylase activities in plant extracts. The glycochip, containing donor polysaccharides printed onto nitrocellulose-coated glass slides, was incubated with crude plant extracts, along with a series of fluorophore-labelled acceptor oligosaccharides. After removing unused labelled oligosaccharides by washing, fluorescence retained on the glycochip as a result of transglycosylase reaction was detected with a standard microarray scanner. The glycochip assay was used to detect transglycosylase activities in crude extracts from nasturtium (Tropaeolum majus) and mouse-ear cress (Arabidopsis thaliana). A number of previously unknown saccharide donor-acceptor pairs active in transglycosylation reactions that lead to the formation of homo- and hetero-glycosidic conjugates, were detected. Our data provide experimental support for the existence of diverse transglycosylase activities in crude plant extracts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10719-009-9271-8DOI Listing
January 2010

Secondary cell wall formation in Cryptococcus neoformans as a rescue mechanism against acid-induced autolysis.

FEMS Yeast Res 2009 Mar 17;9(2):311-20. Epub 2009 Jan 17.

Center of Excellence GLYCOBIOS, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.

Growth of the opportunistic yeast pathogen Cryptococcus neoformans in a synthetic medium containing yeast nitrogen base and 1.0-3.0% glucose is accompanied by spontaneous acidification of the medium, with its pH decreasing from the initial 5.5 to around 2.5 in the stationary phase. During the transition from the late exponential to the stationary phase of growth, many cells died as a consequence of autolytic erosion of their cell walls. Simultaneously, there was an increase in an ecto-glucanase active towards beta-1,3-glucan and having a pH optimum between pH 3.0 and 3.5. As a response to cell wall degradation, some cells developed an unusual survival strategy by forming 'secondary' cell walls underneath the original ones. Electron microscopy revealed that the secondary cell walls were thicker than the primary ones, exposing bundles of polysaccharide microfibrils only partially masked by an amorphous cell wall matrix on their surfaces. The cells bearing secondary cell walls had a three to five times higher content of the alkali-insoluble cell wall polysaccharides glucan and chitin, and their chitin/glucan ratio was about twofold higher than in cells from the logarithmic phase of growth. The cell lysis and the formation of the secondary cell walls could be suppressed by buffering the growth medium between pH 4.5 and 6.5.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1567-1364.2008.00478.xDOI Listing
March 2009

Substrate specificity and catalytic mechanism of a xyloglucan xyloglucosyl transferase HvXET6 from barley (Hordeum vulgare L.).

FEBS J 2009 Jan 4;276(2):437-56. Epub 2008 Dec 4.

School of Agriculture, Food and Wine, Australian Centre for Plant Functional Genomics, University of Adelaide, Australia.

A family 16 glycoside hydrolase, xyloglucan xyloglucosyl transferase (EC 2.4.1.207), also known as xyloglucan endotransglycosylase (XET), and designated isoenzyme HvXET6, was purified approximately 400-fold from extracts of young barley seedlings. The complete amino acid sequence of HvXET6 was deduced from the nucleotide sequence of a near full-length cDNA, in combination with tryptic peptide mapping. An additional five to six isoforms or post-translationally modified XET enzymes were detected in crude seedling extracts of barley. The HvXET6 isoenzyme was expressed in Pichia pastoris, characterized and compared with the previously purified native HvXET5 isoform. Barley HvXET6 has a similar apparent molecular mass of 33-35 kDa to the previously purified HvXET5 isoenzyme, but the two isoenzymes differ in their isoelectric points, pH optima, kinetic properties and substrate specificities. The HvXET6 isoenzyme catalyses transfer reactions between xyloglucans and soluble cellulosic substrates, using oligo-xyloglucosides as acceptors, but at rates that are significantly different from those observed for HvXET5. No hydrolytic activity could be detected with either isoenzyme. Comparisons of the reaction rates using xyloglucan or hydroxyethyl cellulose as donors and a series of cellodextrins as acceptors indicated that the acceptor site of HvXET can accommodate five glucosyl residues. Molecular modelling supported this conclusion and further confirmed the ability of the enzyme's active site to accommodate xyloglucan and cellulosic substrates. The two HvXETs followed a ping-pong (Bi, Bi) rather than a sequential reaction mechanism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2008.06791.xDOI Listing
January 2009

Assembly of the yeast cell wall. Crh1p and Crh2p act as transglycosylases in vivo and in vitro.

J Biol Chem 2008 Oct 11;283(44):29859-72. Epub 2008 Aug 11.

Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.

The cross-linking of polysaccharides to assemble new cell wall in fungi requires mechanisms by which a preexisting linkage is broken for each new one made, to allow for the absence of free energy sources outside the plasma membrane. Previous work showed that Crh1p and Crh2p, putative transglycosylases, are required for the linkage of chitin to beta(1-3)glucose branches of beta(1-6)glucan in the cell wall of budding yeast. To explore the linking reaction in vivo and in vitro, we used fluorescent sulforhodamine-linked laminari-oligosaccharides as artificial chitin acceptors. In vivo, fluorescence was detected in bud scars and at a lower level in the cell contour, both being dependent on the CRH genes. The linking reaction was also shown in digitonin-permeabilized cells, with UDP-N-acetylglucosamine as the substrate for nascent chitin production. Both the nucleotide and the Crh proteins were required here. A gas1 mutant that overexpresses Crh1p showed very high fluorescence both in intact and permeabilized cells. In the latter, fluorescence was still incorporated in patches in the absence of UDP-GlcNAc. Isolated cell walls of this strain, when incubated with sulforhodamine-oligosaccharide, also showed Crhp-dependent fluorescence in patches, which were identified as bud scars. In all three systems, binding of the fluorescent material to chitin was verified by chitinase digestion. Moreover, the cell wall reaction was inhibited by chitooligosaccharides. These results demonstrate that the Crh proteins act by transferring chitin chains to beta(1-6)glucan, with a newly observed high activity in the bud scar. The importance of transglycosylation for cell wall assembly is thus firmly established.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M804274200DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2573080PMC
October 2008

Induction of conidiation by endogenous volatile compounds in Trichoderma spp.

FEMS Microbiol Lett 2008 Jul 28;284(2):231-6. Epub 2008 May 28.

Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.

Light and starvation are two principal environmental stimuli inducing conidiation in the soil micromycete Trichoderma spp. We observed that volatiles produced by conidiating colonies of Trichoderma spp. elicited conidiation in colonies that had not been induced previously by exposure to light. The inducing effect of volatiles was both intra- and interspecific. Chemical profiles of the volatile organic compounds (VOCs) produced by the nonconidiated colonies grown in the dark and by the conidiating colonies were compared using solid-phase microextraction of headspace samples followed by tandem GC-MS. The conidiation was accompanied by increased production of eight-carbon compounds 1-octen-3-ol and its analogs 3-octanol and 3-octanone. When vapors of these compounds were applied individually to dark-grown colonies, they elicited their conidiation already at submicromolar concentrations. It is concluded that the eight-carbon VOCs act as signaling molecules regulating development and mediating intercolony communication in Trichoderma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2008.01202.xDOI Listing
July 2008

Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls.

BMC Plant Biol 2008 May 22;8:60. Epub 2008 May 22.

Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.

Background: Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure.

Results: Using a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15) to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types.

Conclusion: These observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re-considered in relation to the potential masking of cell wall epitopes by other cell wall components.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2229-8-60DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2409341PMC
May 2008

Phenotype analysis of Saccharomyces cerevisiae mutants with deletions in Pir cell wall glycoproteins.

Antonie Van Leeuwenhoek 2008 Aug 16;94(2):335-42. Epub 2008 Feb 16.

Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia.

Proteins with internal repeats (Pir) belong to a minor group of covalently linked yeast cell wall proteins. They are not essential for viability but important for cell wall strength, reduced permeability against plant antifungal enzymes and maintenance of osmotic stability. Here we show the importance of Pir proteins of Saccharomyces cerevisiae for growth at low pH and in presence of various inhibitors. Cell wall analysis of Deltapir1,2,3,4 deletion strain revealed slightly increased chitin content and changes in relative proportion of alkali-soluble and insoluble glucan and chitin fractions. Activation of the cell wall integrity pathway was indicated by increased levels of double phosphorylated Mpk1p/Slt2p in the pir deletants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10482-008-9228-0DOI Listing
August 2008

One-pot fluorescent labeling of xyloglucan oligosaccharides with sulforhodamine.

Anal Biochem 2008 Apr 28;375(2):232-6. Epub 2007 Nov 28.

Institute of Chemistry, Center of Excellence GLYCOBIOS, Slovak Academy of Sciences, Dúbravská cesta 9, 84538 Bratislava, Slovakia.

Xyloglucan oligosaccharides fluorescently labeled with sulforhodamine have proved to be a valuable tool in the assessment of transglycosylating activity of plant xyloglucan endotransglucosylase/hydrolase (XTH; EC 2.4.1.207). Here we describe a simple and fast procedure for their preparation. Accordingly, the starting xyloglucan-derived oligosaccharides are in the first step converted to their corresponding 1-amino-1-deoxyalditols (glycamines) by incubation with ammonium acetate and NaCNBH(3) at 80 degrees C for 2-4 h, and in the second step, the glycamines are reacted with Lissamine rhodamine B sulfonyl chloride to obtain fluorescently labeled derivatives of the oligosaccharide glycamines. All operations are carried out in a single centrifuge tube and the products from the individual reaction steps are isolated on the basis of their differential solubility in organic solvents. Using the described protocol, the whole procedure can be accomplished in less than 24 h. The sulforhodamine-labeled xyloglucan oligosaccharides thus obtained proved suitable as substrates for a sensitive fluorescence assay of the transglycosylating activity of XTH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2007.11.025DOI Listing
April 2008

Glyco-array technology for efficient monitoring of plant cell wall glycosyltransferase activities.

Glycoconj J 2008 Jan 1;25(1):49-58. Epub 2007 Aug 1.

Environmental and Plant Biology department, Ohio University, Porter Hall 512, Athens, OH, 45701, USA.

The plant cell wall is a complex network of polysaccharides. The diversity in the linkage types connecting all monosaccharides within these polysaccharides would need a large set of glycosyltransferases to catalyze their formation. Development of a methodology that would allow monitoring of glycosyltransferase activities in an easy and high-throughput manner would help assign biochemical functions, and understand their roles in building this complex network. A microarray-based method was optimized for testing glycosyltransferases involved in plant wall biosynthesis using an alpha(1,2)fucosyltransferase involved in xyloglucan biosynthesis. The method is simple, sensitive, and easy to implement in any lab. Tamarind xyloglucan polymer and trimer, and a series of cello-oligosaccharides were immobilized on a thin-coated photo-activable glass slide. The slide with the attached sugars was then used to estimate the incorporation of [(14)C]Fuc onto xyloglucan polymer and trimer. [(14)C]-radiolabel incorporation is revealed with a standard phosphoimager scanner, after exposure of the glycochip to a phosphor screen and detection. The method proved to be sensitive enough to detect as low as 45 cpm/spot. Oriented anchoring of small oligosaccharides (trimer) was required for optimal transferase activities. The glycochip was also used to monitor and estimate xyloglucan fucosyltransferase activity in detergent-solubilized crude extracts from pea microsomes that are known to contain this enzyme activity. Our data indicate that the methodology can be used for efficient and rapid monitoring of glycosyltransferase activities involved in plant wall polysaccharides biosynthesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10719-007-9060-1DOI Listing
January 2008

A Barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-beta-D-glucans.

J Biol Chem 2007 Apr 28;282(17):12951-62. Epub 2007 Feb 28.

School of Agriculture, Food and Wine, and Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia.

Molecular interactions between wall polysaccharides, which include cellulose and a range of noncellulosic polysaccharides such as xyloglucans and (1,3;1,4)-beta-D-glucans, are fundamental to cell wall properties. These interactions have been assumed to be noncovalent in nature in most cases. Here we show that a highly purified barley xyloglucan xyloglucosyl transferase HvXET5 (EC 2.4.1.207), a member of the GH16 group of glycoside hydrolases, catalyzes the in vitro formation of covalent linkages between xyloglucans and cellulosic substrates and between xyloglucans and (1,3;1,4)-beta-D-glucans. The rate of covalent bond formation catalyzed by HvXET5 with hydroxyethylcellulose (HEC) is comparable with that on tamarind xyloglucan, whereas that with (1,3; 1,4)-beta-D-glucan is significant but slower. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analyses showed that oligosaccharides released from the fluorescent HEC:xyloglucan conjugate by a specific (1,4)-beta-D-glucan endohydrolase consisted of xyloglucan substrate with one, two, or three glucosyl residues attached. Ancillary peaks contained hydroxyethyl substituents (m/z 45) and confirmed that the parent material consisted of HEC covalently linked with xyloglucan. Similarly, partial hydrolysis of the (1,3;1,4)-beta-D-glucan:xyloglucan conjugate by a specific (1,3;1,4)-beta-D-glucan endohydrolase revealed the presence of a series of fluorescent oligosaccharides that consisted of the fluorescent xyloglucan acceptor substrate linked covalently with 2-6 glucosyl residues. These findings raise the possibility that xyloglucan endo-transglucosylases could link different polysaccharides in vivo and hence influence cell wall strength, flexibility, and porosity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M611487200DOI Listing
April 2007