Publications by authors named "Virág Gehl"

1 Publications

  • Page 1 of 1

A reassessment of the role of oxygen scavenging enzymes in the emergence of metronidazole resistance in trichomonads.

Int J Parasitol Drugs Drug Resist 2021 Apr 30;16:38-44. Epub 2021 Apr 30.

Institute for Specific Prophylaxis and Tropical Medicine Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria. Electronic address:

Trichomonads are an order of parasitic protists which infect a wide range of hosts. The human parasite Trichomonas vaginalis and the bovine parasite Tritrichomonas foetus which also infects cats and swine are of considerable medical and veterinary importance, respectively. Since trichomonads are microaerophiles/anaerobes they are susceptible to 5-nitroimidazoles such as metronidazole. 5-nitroimidazoles are exclusively toxic to microaerophilic/anaerobic organisms because reduction, i.e. activation, of the drug can only occur in a highly reductive environment. 5-nitroimidazoles have remained a reliable treatment option throughout the last decades but drug resistance can be a problem. Clinical resistance to 5-nitroimidazoles has been studied in more detail in T. vaginalis and has been ascribed to defective oxygen scavenging mechanisms which lead to higher intracellular oxygen concentrations and, consequently, to less drug being reduced. Two enzymes, flavin reductase (FR) and NADH oxidase have been suggested to be the major oxygen scavenging enzymes in T. vaginalis. The loss, or at least an impairment of FR which reduces oxygen to hydrogen peroxide, has been proposed as the central mechanism that enables the emergence of 5-nitroimidazole resistance. In this study we explored if T. foetus also encodes a homolog of FR and if it is, likewise, involved in resistance. T. foetus was indeed found to express a FR but it was only weakly active as compared to the T. vaginalis homolog. Further, activity of FR in T. foetus was unchanged in metronidazole-resistant cell lines, ruling out that it has a role in metronidazole resistance. Finally, we measured oxygen scavenging rates in metronidazole-sensitive and -resistant cell lines and found that NADH oxidase and FR are not the major oxygen scavenging enzymes in trichomonads and that oxygen scavenging is possibly a consequence, rather than a cause of metronidazole resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpddr.2021.04.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8113990PMC
April 2021