Publications by authors named "Vinicius Tragante"

70 Publications

rs41291957 controls miR-143 and miR-145 expression and impacts coronary artery disease risk.

EMBO Mol Med 2021 Sep 22:e14060. Epub 2021 Sep 22.

Humanitas Research Hospital-IRCCS, Rozzano, Italy.

The role of single nucleotide polymorphisms (SNPs) in the etiopathogenesis of cardiovascular diseases is well known. The effect of SNPs on disease predisposition has been established not only for protein coding genes but also for genes encoding microRNAs (miRNAs). The miR-143/145 cluster is smooth muscle cell-specific and implicated in the pathogenesis of atherosclerosis. Whether SNPs within the genomic sequence of the miR-143/145 cluster are involved in cardiovascular disease development is not known. We thus searched annotated sequence databases for possible SNPs associated with miR-143/145. We identified one SNP, rs41291957 (G > A), located -91 bp from the mature miR-143 sequence, as the nearest genetic variation to this miRNA cluster, with a minor allele frequency > 10%. In silico and in vitro approaches determined that rs41291957 (A) upregulates miR-143 and miR-145, modulating phenotypic switching of vascular smooth cells towards a differentiated/contractile phenotype. Finally, we analysed association between rs41291957 and CAD in two cohorts of patients, finding that the SNP was a protective factor. In conclusion, our study links a genetic variation to a pathological outcome through involvement of miRNAs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.15252/emmm.202114060DOI Listing
September 2021

Distinction between the effects of parental and fetal genomes on fetal growth.

Nat Genet 2021 08 19;53(8):1135-1142. Epub 2021 Jul 19.

deCODE genetics/Amgen, Reykjavik, Iceland.

Birth weight is a common measure of fetal growth that is associated with a range of health outcomes. It is directly affected by the fetal genome and indirectly by the maternal genome. We performed genome-wide association studies on birth weight in the genomes of the child and parents and further analyzed birth length and ponderal index, yielding a total of 243 fetal growth variants. We clustered those variants based on the effects of transmitted and nontransmitted alleles on birth weight. Out of 141 clustered variants, 22 were consistent with parent-of-origin-specific effects. We further used haplotype-specific polygenic risk scores to directly test the relationship between adult traits and birth weight. Our results indicate that the maternal genome contributes to increased birth weight through blood-glucose-raising alleles while blood-pressure-raising alleles reduce birth weight largely through the fetal genome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00896-xDOI Listing
August 2021

The genetic architecture of age-related hearing impairment revealed by genome-wide association analysis.

Commun Biol 2021 06 9;4(1):706. Epub 2021 Jun 9.

deCODE Genetics/Amgen, Reykjavik, Iceland.

Age-related hearing impairment (ARHI) is the most common sensory disorder in older adults. We conducted a genome-wide association meta-analysis of 121,934 ARHI cases and 591,699 controls from Iceland and the UK. We identified 21 novel sequence variants, of which 13 are rare, under either additive or recessive models. Of special interest are a missense variant in LOXHD1 (MAF = 1.96%) and a tandem duplication in FBF1 covering 4 exons (MAF = 0.22%) associating with ARHI (OR = 3.7 for homozygotes, P = 1.7 × 10 and OR = 4.2 for heterozygotes, P = 5.7 × 10, respectively). We constructed an ARHI genetic risk score (GRS) using common variants and showed that a common variant GRS can identify individuals at risk comparable to carriers of rare high penetrance variants. Furthermore, we found that ARHI and tinnitus share genetic causes. This study sheds a new light on the genetic architecture of ARHI, through several rare variants in both Mendelian deafness genes and genes not previously linked to hearing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-021-02224-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190123PMC
June 2021

Eleven genomic loci affect plasma levels of chronic inflammation marker soluble urokinase-type plasminogen activator receptor.

Commun Biol 2021 06 2;4(1):655. Epub 2021 Jun 2.

Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark.

Soluble urokinase-type plasminogen activator receptor (suPAR) is a chronic inflammation marker associated with the development of a range of diseases, including cancer and cardiovascular disease. The genetics of suPAR remain unexplored but may shed light on the biology of the marker and its connection to outcomes. We report a heritability estimate of 60% for the variation in suPAR and performed a genome-wide association meta-analysis on suPAR levels measured in Iceland (N = 35,559) and in Denmark (N = 12,177). We identified 13 independently genome-wide significant sequence variants associated with suPAR across 11 distinct loci. Associated variants were found in and around genes encoding uPAR (PLAUR), its ligand uPA (PLAU), the kidney-disease-associated gene PLA2R1 as well as genes with relations to glycosylation, glycoprotein biosynthesis, and the immune response. These findings provide new insight into the causes of variation in suPAR plasma levels, which may clarify suPAR's potential role in associated diseases, as well as the underlying mechanisms that give suPAR its prognostic value as a unique marker of chronic inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-021-02144-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172928PMC
June 2021

Genetically determined NLRP3 inflammasome activation associates with systemic inflammation and cardiovascular mortality.

Eur Heart J 2021 05;42(18):1742-1756

Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, 1462 Clifton Road NE, Atlanta, GA 30322, USA.

Aims: Inflammation plays an important role in cardiovascular disease (CVD) development. The NOD-like receptor protein-3 (NLRP3) inflammasome contributes to the development of atherosclerosis in animal models. Components of the NLRP3 inflammasome pathway such as interleukin-1β can therapeutically be targeted. Associations of genetically determined inflammasome-mediated systemic inflammation with CVD and mortality in humans are unknown.

Methods And Results: We explored the association of genetic NLRP3 variants with prevalent CVD and cardiovascular mortality in 538 167 subjects on the individual participant level in an explorative gene-centric approach without performing multiple testing. Functional relevance of single-nucleotide polymorphisms on NLRP3 inflammasome activation has been evaluated in monocyte-enriched peripheral blood mononuclear cells (PBMCs). Genetic analyses identified the highly prevalent (minor allele frequency 39.9%) intronic NLRP3 variant rs10754555 to affect NLRP3 gene expression. rs10754555 carriers showed significantly higher C-reactive protein and serum amyloid A plasma levels. Carriers of the G allele showed higher NLRP3 inflammasome activation in isolated human PBMCs. In carriers of the rs10754555 variant, the prevalence of coronary artery disease was significantly higher as compared to non-carriers with a significant interaction between rs10754555 and age. Importantly, rs10754555 carriers had significantly higher risk for cardiovascular mortality during follow-up. Inflammasome inducers (e.g. urate, triglycerides, apolipoprotein C3) modulated the association between rs10754555 and mortality.

Conclusion: The NLRP3 intronic variant rs10754555 is associated with increased systemic inflammation, inflammasome activation, prevalent coronary artery disease, and mortality. This study provides evidence for a substantial role of genetically driven systemic inflammation in CVD and highlights the NLRP3 inflammasome as a therapeutic target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehab107DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244638PMC
May 2021

Genetic insight into sick sinus syndrome.

Eur Heart J 2021 05;42(20):1959-1971

deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Aims: The aim of this study was to use human genetics to investigate the pathogenesis of sick sinus syndrome (SSS) and the role of risk factors in its development.

Methods And Results: We performed a genome-wide association study of 6469 SSS cases and 1 000 187 controls from deCODE genetics, the Copenhagen Hospital Biobank, UK Biobank, and the HUNT study. Variants at six loci associated with SSS, a reported missense variant in MYH6, known atrial fibrillation (AF)/electrocardiogram variants at PITX2, ZFHX3, TTN/CCDC141, and SCN10A and a low-frequency (MAF = 1.1-1.8%) missense variant, p.Gly62Cys in KRT8 encoding the intermediate filament protein keratin 8. A full genotypic model best described the p.Gly62Cys association (P = 1.6 × 10-20), with an odds ratio (OR) of 1.44 for heterozygotes and a disproportionally large OR of 13.99 for homozygotes. All the SSS variants increased the risk of pacemaker implantation. Their association with AF varied and p.Gly62Cys was the only variant not associating with any other arrhythmia or cardiovascular disease. We tested 17 exposure phenotypes in polygenic score (PGS) and Mendelian randomization analyses. Only two associated with the risk of SSS in Mendelian randomization, AF, and lower heart rate, suggesting causality. Powerful PGS analyses provided convincing evidence against causal associations for body mass index, cholesterol, triglycerides, and type 2 diabetes (P > 0.05).

Conclusion: We report the associations of variants at six loci with SSS, including a missense variant in KRT8 that confers high risk in homozygotes and points to a mechanism specific to SSS development. Mendelian randomization supports a causal role for AF in the development of SSS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehaa1108DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140484PMC
May 2021

A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis.

Commun Biol 2021 02 3;4(1):156. Epub 2021 Feb 3.

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Iron is essential for many biological functions and iron deficiency and overload have major health implications. We performed a meta-analysis of three genome-wide association studies from Iceland, the UK and Denmark of blood levels of ferritin (N = 246,139), total iron binding capacity (N = 135,430), iron (N = 163,511) and transferrin saturation (N = 131,471). We found 62 independent sequence variants associating with iron homeostasis parameters at 56 loci, including 46 novel loci. Variants at DUOX2, F5, SLC11A2 and TMPRSS6 associate with iron deficiency anemia, while variants at TF, HFE, TFR2 and TMPRSS6 associate with iron overload. A HBS1L-MYB intergenic region variant associates both with increased risk of iron overload and reduced risk of iron deficiency anemia. The DUOX2 missense variant is present in 14% of the population, associates with all iron homeostasis biomarkers, and increases the risk of iron deficiency anemia by 29%. The associations implicate proteins contributing to the main physiological processes involved in iron homeostasis: iron sensing and storage, inflammation, absorption of iron from the gut, iron recycling, erythropoiesis and bleeding/menstruation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-020-01575-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859200PMC
February 2021

Genetic predisposition to hypertension is associated with preeclampsia in European and Central Asian women.

Nat Commun 2020 11 25;11(1):5976. Epub 2020 Nov 25.

Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.

Preeclampsia is a serious complication of pregnancy, affecting both maternal and fetal health. In genome-wide association meta-analysis of European and Central Asian mothers, we identify sequence variants that associate with preeclampsia in the maternal genome at ZNF831/20q13 and FTO/16q12. These are previously established variants for blood pressure (BP) and the FTO variant has also been associated with body mass index (BMI). Further analysis of BP variants establishes that variants at MECOM/3q26, FGF5/4q21 and SH2B3/12q24 also associate with preeclampsia through the maternal genome. We further show that a polygenic risk score for hypertension associates with preeclampsia. However, comparison with gestational hypertension indicates that additional factors modify the risk of preeclampsia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19733-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688949PMC
November 2020

Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals.

Nat Genet 2020 12 23;52(12):1314-1332. Epub 2020 Nov 23.

Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.

Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00713-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610439PMC
December 2020

Sequence Variants in TAAR5 and Other Loci Affect Human Odor Perception and Naming.

Curr Biol 2020 12 8;30(23):4643-4653.e3. Epub 2020 Oct 8.

deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland. Electronic address:

Olfactory receptor (OR) genes in humans form a special class characterized by unusually high DNA sequence diversity, which should give rise to differences in perception and behavior. In the largest genome-wide association study to date based on olfactory testing, we investigated odor perception and naming with smell tasks performed by 9,122 Icelanders, with replication in a separate sample of 2,204 individuals. We discovered an association between a low-frequency missense variant in TAAR5 and reduced intensity rating of fish odor containing trimethylamine (p.Ser95Pro, p = 5.6 × 10). We demonstrate that TAAR5 genotype affects aversion to fish odor, reflected by linguistic descriptions of the odor and pleasantness ratings. We also discovered common sequence variants in two canonical olfactory receptor loci that associate with increased intensity and naming of licorice odor (trans-anethole: lead variant p.Lys233Asn in OR6C70, p = 8.8 × 10 and p = 1.4 × 10) and enhanced naming of cinnamon (trans-cinnamaldehyde; intergenic variant rs317787-T, p = 5.0 × 10). Together, our results show that TAAR5 genotype variation influences human odor responses and highlight that sequence diversity in canonical OR genes can lead to enhanced olfactory ability, in contrast to the view that greater tolerance for mutations in the human OR repertoire leads to diminished function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2020.09.012DOI Listing
December 2020

Genetic variability in the absorption of dietary sterols affects the risk of coronary artery disease.

Eur Heart J 2020 07;41(28):2618-2628

Laekning, Medical Clinics, Lágmúli 5, 108 Reykjavik, Iceland.

Aims: To explore whether variability in dietary cholesterol and phytosterol absorption impacts the risk of coronary artery disease (CAD) using as instruments sequence variants in the ABCG5/8 genes, key regulators of intestinal absorption of dietary sterols.

Methods And Results: We examined the effects of ABCG5/8 variants on non-high-density lipoprotein (non-HDL) cholesterol (N up to 610 532) and phytosterol levels (N = 3039) and the risk of CAD in Iceland, Denmark, and the UK Biobank (105 490 cases and 844 025 controls). We used genetic scores for non-HDL cholesterol to determine whether ABCG5/8 variants confer greater risk of CAD than predicted by their effect on non-HDL cholesterol. We identified nine rare ABCG5/8 coding variants with substantial impact on non-HDL cholesterol. Carriers have elevated phytosterol levels and are at increased risk of CAD. Consistent with impact on ABCG5/8 transporter function in hepatocytes, eight rare ABCG5/8 variants associate with gallstones. A genetic score of ABCG5/8 variants predicting 1 mmol/L increase in non-HDL cholesterol associates with two-fold increase in CAD risk [odds ratio (OR) = 2.01, 95% confidence interval (CI) 1.75-2.31, P = 9.8 × 10-23] compared with a 54% increase in CAD risk (OR = 1.54, 95% CI 1.49-1.59, P = 1.1 × 10-154) associated with a score of other non-HDL cholesterol variants predicting the same increase in non-HDL cholesterol (P for difference in effects = 2.4 × 10-4).

Conclusions: Genetic variation in cholesterol absorption affects levels of circulating non-HDL cholesterol and risk of CAD. Our results indicate that both dietary cholesterol and phytosterols contribute directly to atherogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehaa531DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377579PMC
July 2020

Association of Factor V Leiden With Subsequent Atherothrombotic Events: A GENIUS-CHD Study of Individual Participant Data.

Circulation 2020 08 13;142(6):546-555. Epub 2020 Jul 13.

Department of Cardiology, Division Heart and Lungs (V.T., A.F.S., J.v.S., A.O.K., F.W.A.), UMC Utrecht, Utrecht University, the Netherlands.

Background: Studies examining the role of factor V Leiden among patients at higher risk of atherothrombotic events, such as those with established coronary heart disease (CHD), are lacking. Given that coagulation is involved in the thrombus formation stage on atherosclerotic plaque rupture, we hypothesized that factor V Leiden may be a stronger risk factor for atherothrombotic events in patients with established CHD.

Methods: We performed an individual-level meta-analysis including 25 prospective studies (18 cohorts, 3 case-cohorts, 4 randomized trials) from the GENIUS-CHD (Genetics of Subsequent Coronary Heart Disease) consortium involving patients with established CHD at baseline. Participating studies genotyped factor V Leiden status and shared risk estimates for the outcomes of interest using a centrally developed statistical code with harmonized definitions across studies. Cox proportional hazards regression models were used to obtain age- and sex-adjusted estimates. The obtained estimates were pooled using fixed-effect meta-analysis. The primary outcome was composite of myocardial infarction and CHD death. Secondary outcomes included any stroke, ischemic stroke, coronary revascularization, cardiovascular mortality, and all-cause mortality.

Results: The studies included 69 681 individuals of whom 3190 (4.6%) were either heterozygous or homozygous (n=47) carriers of factor V Leiden. Median follow-up per study ranged from 1.0 to 10.6 years. A total of 20 studies with 61 147 participants and 6849 events contributed to analyses of the primary outcome. Factor V Leiden was not associated with the combined outcome of myocardial infarction and CHD death (hazard ratio, 1.03 [95% CI, 0.92-1.16]; =28%; -heterogeneity=0.12). Subgroup analysis according to baseline characteristics or strata of traditional cardiovascular risk factors did not show relevant differences. Similarly, risk estimates for the secondary outcomes including stroke, coronary revascularization, cardiovascular mortality, and all-cause mortality were also close to identity.

Conclusions: Factor V Leiden was not associated with increased risk of subsequent atherothrombotic events and mortality in high-risk participants with established and treated CHD. Routine assessment of factor V Leiden status is unlikely to improve atherothrombotic events risk stratification in this population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.119.045526DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493828PMC
August 2020

FLT3 stop mutation increases FLT3 ligand level and risk of autoimmune thyroid disease.

Nature 2020 08 24;584(7822):619-623. Epub 2020 Jun 24.

Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.

Autoimmune thyroid disease is the most common autoimmune disease and is highly heritable. Here, by using a genome-wide association study of 30,234 cases and 725,172 controls from Iceland and the UK Biobank, we find 99 sequence variants at 93 loci, of which 84 variants are previously unreported. A low-frequency (1.36%) intronic variant in FLT3 (rs76428106-C) has the largest effect on risk of autoimmune thyroid disease (odds ratio (OR) = 1.46, P = 2.37 × 10). rs76428106-C is also associated with systemic lupus erythematosus (OR = 1.90, P = 6.46 × 10), rheumatoid factor and/or anti-CCP-positive rheumatoid arthritis (OR = 1.41, P = 4.31 × 10) and coeliac disease (OR = 1.62, P = 1.20 × 10). FLT3 encodes fms-related tyrosine kinase 3, a receptor that regulates haematopoietic progenitor and dendritic cells. RNA sequencing revealed that rs76428106-C generates a cryptic splice site, which introduces a stop codon in 30% of transcripts that are predicted to encode a truncated protein, which lacks its tyrosine kinase domains. Each copy of rs76428106-C doubles the plasma levels of the FTL3 ligand. Activating somatic mutations in FLT3 are associated with acute myeloid leukaemia with a poor prognosis and rs76428106-C also predisposes individuals to acute myeloid leukaemia (OR = 1.90, P = 5.40 × 10). Thus, a predicted loss-of-function germline mutation in FLT3 causes a reduction in full-length FLT3, with a compensatory increase in the levels of its ligand and an increased disease risk, similar to that of a gain-of-function mutation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2436-0DOI Listing
August 2020

Predicted loss and gain of function mutations in ACO1 are associated with erythropoiesis.

Commun Biol 2020 04 23;3(1):189. Epub 2020 Apr 23.

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Hemoglobin is the essential oxygen-carrying molecule in humans and is regulated by cellular iron and oxygen sensing mechanisms. To search for novel variants associated with hemoglobin concentration, we performed genome-wide association studies of hemoglobin concentration using a combined set of 684,122 individuals from Iceland and the UK. Notably, we found seven novel variants, six rare coding and one common, at the ACO1 locus associating with either decreased or increased hemoglobin concentration. Of these variants, the missense Cys506Ser and the stop-gained Lys334Ter mutations are specific to eight and ten generation pedigrees, respectively, and have the two largest effects in the study (Effect = -1.61 SD, CI = [-1.98, -1.35]; Effect = 0.63 SD, CI = [0.36, 0.91]). We also find Cys506Ser to associate with increased risk of persistent anemia (OR = 17.1, P = 2 × 10). The strong bidirectional effects seen in this study implicate ACO1, a known iron sensing molecule, as a major homeostatic regulator of hemoglobin concentration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-020-0921-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181819PMC
April 2020

Genome-wide association identifies seven loci for pelvic organ prolapse in Iceland and the UK Biobank.

Commun Biol 2020 03 17;3(1):129. Epub 2020 Mar 17.

deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.

Pelvic organ prolapse (POP) is a downward descent of one or more of the pelvic organs, resulting in a protrusion of the vaginal wall and/or uterus. We performed a genome-wide association study of POP using data from Iceland and the UK Biobank, a total of 15,010 cases with hospital-based diagnosis code and 340,734 female controls, and found eight sequence variants at seven loci associating with POP (P < 5 × 10); seven common (minor allele frequency >5%) and one with minor allele frequency of 4.87%. Some of the variants associating with POP also associated with traits of similar pathophysiology. Of these, rs3820282, which may alter the estrogen-based regulation of WNT4, also associates with leiomyoma of uterus, gestational duration and endometriosis. Rs3791675 at EFEMP1, a gene involved in connective tissue homeostasis, also associates with hernias and carpal tunnel syndrome. Our results highlight the role of connective tissue metabolism and estrogen exposure in the etiology of POP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-020-0857-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078216PMC
March 2020

Assessing thyroid cancer risk using polygenic risk scores.

Proc Natl Acad Sci U S A 2020 03 4;117(11):5997-6002. Epub 2020 Mar 4.

Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210;

Genome-wide association studies (GWASs) have identified at least 10 single-nucleotide polymorphisms (SNPs) associated with papillary thyroid cancer (PTC) risk. Most of these SNPs are common variants with small to moderate effect sizes. Here we assessed the combined genetic effects of these variants on PTC risk by using summarized GWAS results to build polygenic risk score (PRS) models in three PTC study groups from Ohio (1,544 patients and 1,593 controls), Iceland (723 patients and 129,556 controls), and the United Kingdom (534 patients and 407,945 controls). A PRS based on the 10 established PTC SNPs showed a stronger predictive power compared with the clinical factors model, with a minimum increase of area under the receiver-operating curve of 5.4 percentage points ( ≤ 1.0 × 10). Adding an extended PRS based on 592,475 common variants did not significantly improve the prediction power compared with the 10-SNP model, suggesting that most of the remaining undiscovered genetic risk in thyroid cancer is due to rare, moderate- to high-penetrance variants rather than to common low-penetrance variants. Based on the 10-SNP PRS, individuals in the top decile group of PRSs have a close to sevenfold greater risk (95% CI, 5.4-8.8) compared with the bottom decile group. In conclusion, PRSs based on a small number of common germline variants emphasize the importance of heritable low-penetrance markers in PTC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1919976117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084156PMC
March 2020

Eighty-eight variants highlight the role of T cell regulation and airway remodeling in asthma pathogenesis.

Nat Commun 2020 01 20;11(1):393. Epub 2020 Jan 20.

deCODE genetics/Amgen, Inc., Reykjavik, Iceland.

Asthma is one of the most common chronic diseases affecting both children and adults. We report a genome-wide association meta-analysis of 69,189 cases and 702,199 controls from Iceland and UK biobank. We find 88 asthma risk variants at 56 loci, 19 previously unreported, and evaluate their effect on other asthma and allergic phenotypes. Of special interest are two low frequency variants associated with protection against asthma; a missense variant in TNFRSF8 and 3' UTR variant in TGFBR1. Functional studies show that the TNFRSF8 variant reduces TNFRSF8 expression both on cell surface and in soluble form, acting as loss of function. eQTL analysis suggests that the TGFBR1 variant acts through gain of function and together with an intronic variant in a downstream gene, SMAD3, points to defective TGFβR1 signaling as one of the biological perturbations increasing asthma risk. Our results increase the number of asthma variants and implicate genes with known role in T cell regulation, inflammation and airway remodeling in asthma pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-14144-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971247PMC
January 2020

Association of Genetically Predicted Lipid Levels With the Extent of Coronary Atherosclerosis in Icelandic Adults.

JAMA Cardiol 2020 01;5(1):13-20

deCODE genetics/Amgen Inc, Reykjavík, Iceland.

Importance: Genetic studies have evaluated the influence of blood lipid levels on the risk of coronary artery disease (CAD), but less is known about how they are associated with the extent of coronary atherosclerosis.

Objective: To estimate the contributions of genetically predicted blood lipid levels on the extent of coronary atherosclerosis.

Design, Setting, And Participants: This genetic study included Icelandic adults who had undergone coronary angiography or assessment of coronary artery calcium using cardiac computed tomography. The study incorporates data collected from January 1987 to December 2017 in Iceland in the Swedish Coronary Angiography and Angioplasty Registry and 2 registries of individuals who had undergone percutaneous coronary interventions and coronary artery bypass grafting. For each participant, genetic scores were calculated for levels of non-high-density lipoprotein cholesterol (non-HDL-C), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides, based on reported effect sizes of 345 independent, lipid-associated variants. The genetic scores' predictive ability for lipid levels was assessed in more than 87 000 Icelandic adults. A mendelian randomization approach was used to estimate the contribution of each lipid trait.

Exposures: Genetic scores for levels of non-HDL-C, LDL-C, HDL-C, and triglycerides.

Main Outcomes And Measures: The extent of angiographic CAD and coronary artery calcium quantity.

Results: A total of 12 460 adults (mean [SD] age, 65.1 [10.7] years; 8383 men [67.3%]) underwent coronary angiography, and 4837 had coronary artery calcium assessed by computed tomography. A genetically predicted increase in non-HDL-C levels by 1 SD (38 mg/dL [to convert to millimoles per liter, multiply by 0.0259]) was associated with greater odds of obstructive CAD (odds ratio [OR], 1.83 [95% CI, 1.63-2.07]; P = 2.8 × 10-23). Among patients with obstructive CAD, there were significant associations with multivessel disease (OR, 1.26 [95% CI, 1.11-1.44]; P = 4.1 × 10-4) and 3-vessel disease (OR, 1.47 [95% CI, 1.26-1.72]; P = 9.2 × 10-7). There were also significant associations with the presence of coronary artery calcium (OR, 2.04 [95% CI, 1.70-2.44]; P = 5.3 × 10-15) and loge-transformed coronary artery calcium (effect, 0.70 [95% CI, 0.53-0.87]; P = 1.0 × 10-15). Genetically predicted levels of non-HDL-C remained associated with obstructive CAD and coronary artery calcium extent even after accounting for the association with LDL-C. Genetically predicted levels of HDL-C and triglycerides were associated individually with the extent of coronary atherosclerosis, but not after accounting for the association with non-HDL cholesterol.

Conclusions And Relevance: In this study, genetically predicted levels of non-HDL-C were associated with the extent of coronary atherosclerosis as estimated by 2 different methods. The association was stronger than for genetically predicted levels of LDL-C. These findings further support the notion that non-HDL-C may be a better marker of the overall burden of atherogenic lipoproteins than LDL-C.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamacardio.2019.2946DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902100PMC
January 2020

Sequence variants with large effects on cardiac electrophysiology and disease.

Nat Commun 2019 10 22;10(1):4803. Epub 2019 Oct 22.

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Features of the QRS complex of the electrocardiogram, reflecting ventricular depolarisation, associate with various physiologic functions and several pathologic conditions. We test 32.5 million variants for association with ten measures of the QRS complex in 12 leads, using 405,732 electrocardiograms from 81,192 Icelanders. We identify 190 associations at 130 loci, the majority of which have not been reported before, including associations with 21 rare or low-frequency coding variants. Assessment of genes expressed in the heart yields an additional 13 rare QRS coding variants at 12 loci. We find 51 unreported associations between the QRS variants and echocardiographic traits and cardiovascular diseases, including atrial fibrillation, complete AV block, heart failure and supraventricular tachycardia. We demonstrate the advantage of in-depth analysis of the QRS complex in conjunction with other cardiovascular phenotypes to enhance our understanding of the genetic basis of myocardial mass, cardiac conduction and disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-12682-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805929PMC
October 2019

A comparison of two workflows for regulome and transcriptome-based prioritization of genetic variants associated with myocardial mass.

Genet Epidemiol 2019 09 30;43(6):717-726. Epub 2019 May 30.

Department of Biostatistics, Epidemiology, & Informatics, University of Pennsylvania, Philadelphia, Pennsylvania.

A typical task arising from main effect analyses in a Genome Wide Association Study (GWAS) is to identify single nucleotide polymorphisms (SNPs), in linkage disequilibrium with the observed signals, that are likely causal variants and the affected genes. The affected genes may not be those closest to associating SNPs. Functional genomics data from relevant tissues are believed to be helpful in selecting likely causal SNPs and interpreting implicated biological mechanisms, ultimately facilitating prevention and treatment in the case of a disease trait. These data are typically used post GWAS analyses to fine-map the statistically significant signals identified agnostically by testing all SNPs and applying a multiple testing correction. The number of tested SNPs is typically in the millions, so the multiple testing burden is high. Motivated by this, in this study we investigated an alternative workflow, which consists in utilizing the available functional genomics data as a first step to reduce the number of SNPs tested for association. We analyzed GWAS on electrocardiographic QRS duration using these two workflows. The alternative workflow identified more SNPs, including some residing in loci not discovered with the typical workflow. Moreover, the latter are corroborated by other reports on QRS duration. This indicates the potential value of incorporating functional genomics information at the onset in GWAS analyses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/gepi.22215DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687530PMC
September 2019

Association of Chromosome 9p21 With Subsequent Coronary Heart Disease Events.

Circ Genom Precis Med 2019 04 21;12(4):e002471. Epub 2019 Mar 21.

Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital (M.H.).

Background: Genetic variation at chromosome 9p21 is a recognized risk factor for coronary heart disease (CHD). However, its effect on disease progression and subsequent events is unclear, raising questions about its value for stratification of residual risk.

Methods: A variant at chromosome 9p21 (rs1333049) was tested for association with subsequent events during follow-up in 103 357 Europeans with established CHD at baseline from the GENIUS-CHD (Genetics of Subsequent Coronary Heart Disease) Consortium (73.1% male, mean age 62.9 years). The primary outcome, subsequent CHD death or myocardial infarction (CHD death/myocardial infarction), occurred in 13 040 of the 93 115 participants with available outcome data. Effect estimates were compared with case/control risk obtained from the CARDIoGRAMplusC4D consortium (Coronary Artery Disease Genome-wide Replication and Meta-analysis [CARDIoGRAM] plus The Coronary Artery Disease [C4D] Genetics) including 47 222 CHD cases and 122 264 controls free of CHD.

Results: Meta-analyses revealed no significant association between chromosome 9p21 and the primary outcome of CHD death/myocardial infarction among those with established CHD at baseline (GENIUS-CHD odds ratio, 1.02; 95% CI, 0.99-1.05). This contrasted with a strong association in CARDIoGRAMPlusC4D odds ratio 1.20; 95% CI, 1.18-1.22; P for interaction <0.001 compared with the GENIUS-CHD estimate. Similarly, no clear associations were identified for additional subsequent outcomes, including all-cause death, although we found a modest positive association between chromosome 9p21 and subsequent revascularization (odds ratio, 1.07; 95% CI, 1.04-1.09).

Conclusions: In contrast to studies comparing individuals with CHD to disease-free controls, we found no clear association between genetic variation at chromosome 9p21 and risk of subsequent acute CHD events when all individuals had CHD at baseline. However, the association with subsequent revascularization may support the postulated mechanism of chromosome 9p21 for promoting atheroma development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.119.002471DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625876PMC
April 2019

Subsequent Event Risk in Individuals With Established Coronary Heart Disease.

Circ Genom Precis Med 2019 04 21;12(4):e002470. Epub 2019 Mar 21.

Department of Pharmacotherapy and Translational Research, Centre for Pharmacogenomics (Y.G., R.M.C.-D., J.A.J.), University of Florida, Gainesville.

Background: The Genetics of Subsequent Coronary Heart Disease (GENIUS-CHD) consortium was established to facilitate discovery and validation of genetic variants and biomarkers for risk of subsequent CHD events, in individuals with established CHD.

Methods: The consortium currently includes 57 studies from 18 countries, recruiting 185 614 participants with either acute coronary syndrome, stable CHD, or a mixture of both at baseline. All studies collected biological samples and followed-up study participants prospectively for subsequent events.

Results: Enrollment into the individual studies took place between 1985 to present day with a duration of follow-up ranging from 9 months to 15 years. Within each study, participants with CHD are predominantly of self-reported European descent (38%-100%), mostly male (44%-91%) with mean ages at recruitment ranging from 40 to 75 years. Initial feasibility analyses, using a federated analysis approach, yielded expected associations between age (hazard ratio, 1.15; 95% CI, 1.14-1.16) per 5-year increase, male sex (hazard ratio, 1.17; 95% CI, 1.13-1.21) and smoking (hazard ratio, 1.43; 95% CI, 1.35-1.51) with risk of subsequent CHD death or myocardial infarction and differing associations with other individual and composite cardiovascular endpoints.

Conclusions: GENIUS-CHD is a global collaboration seeking to elucidate genetic and nongenetic determinants of subsequent event risk in individuals with established CHD, to improve residual risk prediction and identify novel drug targets for secondary prevention. Initial analyses demonstrate the feasibility and reliability of a federated analysis approach. The consortium now plans to initiate and test novel hypotheses as well as supporting replication and validation analyses for other investigators.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.119.002470DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629546PMC
April 2019

Association of the coronary artery disease risk gene GUCY1A3 with ischaemic events after coronary intervention.

Cardiovasc Res 2019 08;115(10):1512-1518

Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.

Aim: A common genetic variant at the GUCY1A3 coronary artery disease locus has been shown to influence platelet aggregation. The risk of ischaemic events including stent thrombosis varies with the efficacy of aspirin to inhibit platelet reactivity. This study sought to investigate whether homozygous GUCY1A3 (rs7692387) risk allele carriers display higher on-aspirin platelet reactivity and risk of ischaemic events early after coronary intervention.

Methods And Results: The association of GUCY1A3 genotype and on-aspirin platelet reactivity was analysed in the genetics substudy of the ISAR-ASPI registry (n = 1678) using impedance aggregometry. The clinical outcome cardiovascular death or stent thrombosis within 30 days after stenting was investigated in a meta-analysis of substudies of the ISAR-ASPI registry, the PLATO trial (n = 3236), and the Utrecht Coronary Biobank (n = 1003) comprising a total 5917 patients. Homozygous GUCY1A3 risk allele carriers (GG) displayed increased on-aspirin platelet reactivity compared with non-risk allele (AA/AG) carriers [150 (interquartile range 91-209) vs. 134 (85-194) AU⋅min, P < 0.01]. More homozygous risk allele carriers, compared with non-risk allele carriers, were assigned to the high-risk group for ischaemic events (>203 AU⋅min; 29.5 vs. 24.2%, P = 0.02). Homozygous risk allele carriers were also at higher risk for cardiovascular death or stent thrombosis (hazard ratio 1.70, 95% confidence interval 1.08-2.68; P = 0.02). Bleeding risk was not altered.

Conclusion: We conclude that homozygous GUCY1A3 risk allele carriers are at increased risk of cardiovascular death or stent thrombosis within 30 days after coronary stenting, likely due to higher on-aspirin platelet reactivity. Whether GUCY1A3 genotype helps to tailor antiplatelet treatment remains to be investigated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvz015DOI Listing
August 2019

Integrative Functional Annotation of 52 Genetic Loci Influencing Myocardial Mass Identifies Candidate Regulatory Variants and Target Genes.

Circ Genom Precis Med 2019 02;12(2):e002328

Department of Cardiology (D.H., M.H., J.v.S., V.T., F.W.A.), UMC Utrecht, Utrecht University, The Netherlands.

Background: Regulatory elements may be involved in the mechanisms by which 52 loci influence myocardial mass, reflected by abnormal amplitude and duration of the QRS complex on the ECG. Functional annotation thus far did not take into account how these elements are affected in disease context.

Methods: We generated maps of regulatory elements on hypertrophic cardiomyopathy patients (ChIP-seq N=14 and RNA-seq N=11) and nondiseased hearts (ChIP-seq N=4 and RNA-seq N=11). We tested enrichment of QRS-associated loci on elements differentially acetylated and directly regulating differentially expressed genes between hypertrophic cardiomyopathy patients and controls. We further performed functional annotation on QRS-associated loci using these maps of differentially active regulatory elements.

Results: Regions differentially affected in disease showed a stronger enrichment ( P=8.6×10) for QRS-associated variants than those not showing differential activity ( P=0.01). Promoters of genes differentially regulated between hypertrophic cardiomyopathy patients and controls showed more enrichment ( P=0.001) than differentially acetylated enhancers ( P=0.8) and super-enhancers ( P=0.025). We also identified 74 potential causal variants overlapping these differential regulatory elements. Eighteen of the genes mapped confirmed previous findings, now also pinpointing the potentially affected regulatory elements and candidate causal variants. Fourteen new genes were also mapped.

Conclusions: Our results suggest differentially active regulatory elements between hypertrophic cardiomyopathy patients and controls can offer more insights into the mechanisms of QRS-associated loci than elements not affected by disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.118.002328DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6380958PMC
February 2019

A loss-of-function variant in ALOX15 protects against nasal polyps and chronic rhinosinusitis.

Nat Genet 2019 02 14;51(2):267-276. Epub 2019 Jan 14.

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Nasal polyps (NP) are lesions on the nasal and paranasal sinus mucosa and are a risk factor for chronic rhinosinusitis (CRS). We performed genome-wide association studies on NP and CRS in Iceland and the UK (using UK Biobank data) with 4,366 NP cases, 5,608 CRS cases, and >700,000 controls. We found 10 markers associated with NP and 2 with CRS. We also tested 210 markers reported to associate with eosinophil count, yielding 17 additional NP associations. Of the 27 NP signals, 7 associate with CRS and 13 with asthma. Most notably, a missense variant in ALOX15 that causes a p.Thr560Met alteration in arachidonate 15-lipoxygenase (15-LO) confers large genome-wide significant protection against NP (P = 8.0 × 10, odds ratio = 0.32; 95% confidence interval = 0.26, 0.39) and CRS (P = 1.1 × 10, odds ratio = 0.64; 95% confidence interval = 0.55, 0.75). p.Thr560Met, carried by around 1 in 20 Europeans, was previously shown to cause near total loss of 15-LO enzymatic activity. Our findings identify 15-LO as a potential target for therapeutic intervention in NP and CRS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0314-6DOI Listing
February 2019

Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci.

Mol Psychiatry 2020 10 7;25(10):2392-2409. Epub 2019 Jan 7.

Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, Netherlands.

Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 × 10) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P < 4.5 × 10) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-018-0313-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515840PMC
October 2020

Sequence variants associating with urinary biomarkers.

Hum Mol Genet 2019 04;28(7):1199-1211

Faculty of Medicine, University of Iceland, Reykjavik, Iceland.

Urine dipstick tests are widely used in routine medical care to diagnose kidney and urinary tract and metabolic diseases. Several environmental factors are known to affect the test results, whereas the effects of genetic diversity are largely unknown. We tested 32.5 million sequence variants for association with urinary biomarkers in a set of 150 274 Icelanders with urine dipstick measurements. We detected 20 association signals, of which 14 are novel, associating with at least one of five clinical entities defined by the urine dipstick: glucosuria, ketonuria, proteinuria, hematuria and urine pH. These include three independent glucosuria variants at SLC5A2, the gene encoding the sodium-dependent glucose transporter (SGLT2), a protein targeted pharmacologically to increase urinary glucose excretion in the treatment of diabetes. Two variants associating with proteinuria are in LRP2 and CUBN, encoding the co-transporters megalin and cubilin, respectively, that mediate proximal tubule protein uptake. One of the hematuria-associated variants is a rare, previously unreported 2.5 kb exonic deletion in COL4A3. Of the four signals associated with urine pH, we note that the pH-increasing alleles of two variants (POU2AF1, WDR72) associate significantly with increased risk of kidney stones. Our results reveal that genetic factors affect variability in urinary biomarkers, in both a disease dependent and independent context.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddy409DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423415PMC
April 2019

Genome-wide associations for benign prostatic hyperplasia reveal a genetic correlation with serum levels of PSA.

Nat Commun 2018 11 8;9(1):4568. Epub 2018 Nov 8.

deCODE genetics/AMGEN, 101, Reykjavik, Iceland.

Benign prostatic hyperplasia and associated lower urinary tract symptoms (BPH/LUTS) are common conditions affecting the majority of elderly males. Here we report the results of a genome-wide association study of symptomatic BPH/LUTS in 20,621 patients and 280,541 controls of European ancestry, from Iceland and the UK. We discovered 23 genome-wide significant variants, located at 14 loci. There is little or no overlap between the BPH/LUTS variants and published prostate cancer risk variants. However, 15 of the variants reported here also associate with serum levels of prostate specific antigen (PSA) (at a Bonferroni corrected P < 0.0022). Furthermore, there is a strong genetic correlation, r = 0.77 (P = 2.6 × 10), between PSA and BPH/LUTS, and one standard deviation increase in a polygenic risk score (PRS) for BPH/LUTS increases PSA levels by 12.9% (P = 1.6×10). These results shed a light on the genetic background of BPH/LUTS and its substantial influence on PSA levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-06920-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224563PMC
November 2018
-->