Publications by authors named "Vincent Rideout"

1 Publications

  • Page 1 of 1

Deep nets vs expert designed features in medical physics: An IMRT QA case study.

Med Phys 2018 Jun 18;45(6):2672-2680. Epub 2018 Apr 18.

Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.

Purpose: The purpose of this study was to compare the performance of Deep Neural Networks against a technique designed by domain experts in the prediction of gamma passing rates for Intensity Modulated Radiation Therapy Quality Assurance (IMRT QA).

Method: A total of 498 IMRT plans across all treatment sites were planned in Eclipse version 11 and delivered using a dynamic sliding window technique on Clinac iX or TrueBeam Linacs. Measurements were performed using a commercial 2D diode array, and passing rates for 3%/3 mm local dose/distance-to-agreement (DTA) were recorded. Separately, fluence maps calculated for each plan were used as inputs to a convolution neural network (CNN). The CNNs were trained to predict IMRT QA gamma passing rates using TensorFlow and Keras. A set of model architectures, inspired by the convolutional blocks of the VGG-16 ImageNet model, were constructed and implemented. Synthetic data, created by rotating and translating the fluence maps during training, was created to boost the performance of the CNNs. Dropout, batch normalization, and data augmentation were utilized to help train the model. The performance of the CNNs was compared to a generalized Poisson regression model, previously developed for this application, which used 78 expert designed features.

Results: Deep Neural Networks without domain knowledge achieved comparable performance to a baseline system designed by domain experts in the prediction of 3%/3 mm Local gamma passing rates. An ensemble of neural nets resulted in a mean absolute error (MAE) of 0.70 ± 0.05 and the domain expert model resulted in a 0.74 ± 0.06.

Conclusions: Convolutional neural networks (CNNs) with transfer learning can predict IMRT QA passing rates by automatically designing features from the fluence maps without human expert supervision. Predictions from CNNs are comparable to a system carefully designed by physicist experts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.12890DOI Listing
June 2018